Normalized defining polynomial
\( x^{16} - 2 x^{15} + 17 x^{14} - 54 x^{13} + 222 x^{12} - 336 x^{11} + 990 x^{10} - 958 x^{9} - 575 x^{8} + 15076 x^{7} - 25976 x^{6} + 14764 x^{5} + 64476 x^{4} - 130456 x^{3} + 170781 x^{2} - 134890 x + 40229 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(68681261305082905600000000=2^{16}\cdot 5^{8}\cdot 11^{4}\cdot 29^{4}\cdot 509^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 29, 509$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{30} a^{12} + \frac{2}{5} a^{11} - \frac{1}{15} a^{10} - \frac{1}{3} a^{9} - \frac{13}{30} a^{8} + \frac{4}{15} a^{7} - \frac{1}{6} a^{6} - \frac{2}{5} a^{5} + \frac{13}{30} a^{4} + \frac{2}{15} a^{3} - \frac{4}{15} a^{2} + \frac{7}{15} a - \frac{1}{30}$, $\frac{1}{30} a^{13} + \frac{2}{15} a^{11} + \frac{7}{15} a^{10} - \frac{13}{30} a^{9} + \frac{7}{15} a^{8} - \frac{11}{30} a^{7} - \frac{2}{5} a^{6} + \frac{7}{30} a^{5} - \frac{1}{15} a^{4} + \frac{2}{15} a^{3} - \frac{1}{3} a^{2} + \frac{11}{30} a + \frac{2}{5}$, $\frac{1}{30} a^{14} - \frac{2}{15} a^{11} - \frac{1}{6} a^{10} - \frac{1}{5} a^{9} + \frac{11}{30} a^{8} - \frac{7}{15} a^{7} - \frac{1}{10} a^{6} - \frac{7}{15} a^{5} + \frac{2}{5} a^{4} + \frac{2}{15} a^{3} + \frac{13}{30} a^{2} - \frac{7}{15} a + \frac{2}{15}$, $\frac{1}{26975025751921174798205586173790} a^{15} - \frac{12513207075114879111409738037}{2697502575192117479820558617379} a^{14} - \frac{343661408555338687992774264113}{26975025751921174798205586173790} a^{13} + \frac{135044330832283626189565069151}{13487512875960587399102793086895} a^{12} + \frac{2167316924464024264769453112785}{5395005150384234959641117234758} a^{11} + \frac{37654476002280667461063398156}{385357510741731068545794088197} a^{10} - \frac{1344357929879527302235886600125}{2697502575192117479820558617379} a^{9} - \frac{1725296034555532881591173641639}{4495837625320195799700931028965} a^{8} + \frac{312468431813828580196559465443}{4495837625320195799700931028965} a^{7} + \frac{166104710200542593666696209667}{4495837625320195799700931028965} a^{6} + \frac{12082626309764760532839307580519}{26975025751921174798205586173790} a^{5} + \frac{2570948947568982119158387239659}{13487512875960587399102793086895} a^{4} + \frac{1862114448032637672774062459749}{5395005150384234959641117234758} a^{3} + \frac{88490770845801264341511242108}{4495837625320195799700931028965} a^{2} + \frac{2240531014587479575580732794603}{5395005150384234959641117234758} a + \frac{960106810411759631763082465867}{1926787553708655342728970440985}$
Class group and class number
$C_{2}\times C_{24}$, which has order $48$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 29340.4724529 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 65 conjugacy class representatives for t16n919 are not computed |
| Character table for t16n919 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.4400.1, 4.4.725.1, 4.4.127600.1, 8.0.285772960000.1, 8.0.285772960000.2, 8.8.16281760000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.2 | $x^{8} + 2 x^{7} + 8 x^{2} + 48$ | $2$ | $4$ | $8$ | $C_2^2:C_4$ | $[2, 2]^{4}$ |
| 2.8.8.2 | $x^{8} + 2 x^{7} + 8 x^{2} + 48$ | $2$ | $4$ | $8$ | $C_2^2:C_4$ | $[2, 2]^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $11$ | 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 509 | Data not computed | ||||||