Normalized defining polynomial
\( x^{16} - 4 x^{15} + 89 x^{14} - 294 x^{13} + 4015 x^{12} - 11714 x^{11} + 118502 x^{10} - 287877 x^{9} + 2380153 x^{8} - 4384707 x^{7} + 33049817 x^{6} - 40610728 x^{5} + 311208069 x^{4} - 202336688 x^{3} + 1801687213 x^{2} - 398902253 x + 4791131651 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(686685737739964474054511962890625=5^{12}\cdot 109^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $112.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{4241780} a^{12} - \frac{3}{4241780} a^{11} - \frac{90829}{424178} a^{10} + \frac{90685}{424178} a^{9} + \frac{207349}{1060445} a^{8} - \frac{62165}{848356} a^{7} - \frac{1029569}{4241780} a^{6} + \frac{28058}{212089} a^{5} - \frac{1389}{4241780} a^{4} - \frac{156519}{848356} a^{3} + \frac{62005}{848356} a^{2} + \frac{462463}{4241780} a + \frac{966081}{4241780}$, $\frac{1}{21208900} a^{13} - \frac{1}{10604450} a^{12} - \frac{5150073}{21208900} a^{11} - \frac{212233}{2120890} a^{10} - \frac{96161}{5302225} a^{9} + \frac{2639461}{21208900} a^{8} - \frac{670197}{10604450} a^{7} + \frac{5894261}{21208900} a^{6} + \frac{6922441}{21208900} a^{5} + \frac{1924894}{5302225} a^{4} - \frac{47257}{2120890} a^{3} + \frac{1446689}{10604450} a^{2} - \frac{1763754}{5302225} a + \frac{7328751}{21208900}$, $\frac{1}{21208900} a^{14} - \frac{1}{10604450} a^{12} + \frac{3940649}{21208900} a^{11} + \frac{2553123}{10604450} a^{10} - \frac{858377}{21208900} a^{9} + \frac{1073032}{5302225} a^{8} + \frac{1173112}{5302225} a^{7} - \frac{1953053}{5302225} a^{6} - \frac{932873}{5302225} a^{5} - \frac{1732743}{21208900} a^{4} + \frac{1710663}{21208900} a^{3} + \frac{464763}{4241780} a^{2} - \frac{1174689}{5302225} a + \frac{8412577}{21208900}$, $\frac{1}{31210814372277206150865600586362504100} a^{15} + \frac{274750073631199162661286796641}{15605407186138603075432800293181252050} a^{14} - \frac{80684703437488727733637673431}{7802703593069301537716400146590626025} a^{13} - \frac{1812385047743600015266366823683}{15605407186138603075432800293181252050} a^{12} - \frac{386732337673000029442658978028217139}{6242162874455441230173120117272500820} a^{11} + \frac{1351215261422832877144391092624162411}{6242162874455441230173120117272500820} a^{10} + \frac{54116250632782567497564623681936441}{15605407186138603075432800293181252050} a^{9} + \frac{881497561246274050780127020623752558}{7802703593069301537716400146590626025} a^{8} - \frac{4026508495460901815242861353219621883}{31210814372277206150865600586362504100} a^{7} - \frac{12422387262117071681615097285002339613}{31210814372277206150865600586362504100} a^{6} + \frac{11136712414577778869935224874962460911}{31210814372277206150865600586362504100} a^{5} - \frac{1216678087497130889281718217060576683}{3121081437227720615086560058636250410} a^{4} + \frac{3125627986536143214901589056937195899}{7802703593069301537716400146590626025} a^{3} + \frac{621057485838523801281828413331013633}{31210814372277206150865600586362504100} a^{2} - \frac{341670204810944558934830918564643237}{7802703593069301537716400146590626025} a + \frac{780826456039261776521391171802067847}{31210814372277206150865600586362504100}$
Class group and class number
$C_{20}\times C_{340}$, which has order $6800$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1179924.17361 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $109$ | 109.8.6.1 | $x^{8} - 5341 x^{4} + 15397776$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 109.8.6.1 | $x^{8} - 5341 x^{4} + 15397776$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |