Normalized defining polynomial
\( x^{16} - x^{15} + 70 x^{14} - 2149 x^{13} + 14931 x^{12} - 286964 x^{11} + 3931708 x^{10} - 35756396 x^{9} + 326985485 x^{8} - 2509676741 x^{7} + 16373741504 x^{6} - 80620586906 x^{5} + 305886025651 x^{4} - 925536442193 x^{3} + 2156195358075 x^{2} - 3016380401225 x + 4337589140875 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(685578251337344185848967768724165145970351361=13^{14}\cdot 89^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $634.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} - \frac{1}{5} a^{9} + \frac{2}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{5} a^{11} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{5} a^{5} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{9} - \frac{1}{5} a^{8} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{9} + \frac{1}{5} a^{8} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{25} a^{14} + \frac{1}{25} a^{11} + \frac{2}{25} a^{10} - \frac{2}{25} a^{9} + \frac{6}{25} a^{8} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{6}{25} a^{5} + \frac{3}{25} a^{4} + \frac{12}{25} a^{3} - \frac{12}{25} a^{2} + \frac{2}{5} a$, $\frac{1}{2142658628951445138054446496873808274052610943018522851014346863445078634114510260261375} a^{15} - \frac{20470047056033004364923992987058072487023038665094339993923567654949459391704529134271}{2142658628951445138054446496873808274052610943018522851014346863445078634114510260261375} a^{14} - \frac{21809361938587263457925817145540225220053165173977102080714825827831414402198722290863}{428531725790289027610889299374761654810522188603704570202869372689015726822902052052275} a^{13} + \frac{121575012821649160856178386555830168718114913477670993204102576083959654419740407461576}{2142658628951445138054446496873808274052610943018522851014346863445078634114510260261375} a^{12} + \frac{49917892646606380943657989664715887477495810790976922121218585467909404533395749710986}{2142658628951445138054446496873808274052610943018522851014346863445078634114510260261375} a^{11} + \frac{77519201904564882917648088890616669133960704547588491434258232394481932417255965803486}{2142658628951445138054446496873808274052610943018522851014346863445078634114510260261375} a^{10} + \frac{547669303068319672907535106988595556051181841480996877837599147789724771982188803441528}{2142658628951445138054446496873808274052610943018522851014346863445078634114510260261375} a^{9} + \frac{523075371475322972708544176796504599456912820456780207635053316606733452528522819907554}{2142658628951445138054446496873808274052610943018522851014346863445078634114510260261375} a^{8} - \frac{3554054460336082640855383722050145120389163170857800753714429886696053094926925965519}{85706345158057805522177859874952330962104437720740914040573874537803145364580410410455} a^{7} - \frac{1002449576304064852799577302830820916053012513924215120869254088949964585446392921031291}{2142658628951445138054446496873808274052610943018522851014346863445078634114510260261375} a^{6} - \frac{401041494394654429650159380819718354723722618335006081847472145599131759553082463150051}{2142658628951445138054446496873808274052610943018522851014346863445078634114510260261375} a^{5} - \frac{4739803496302937471456168309537220439107704391520183929925146763921400802864651635031}{2142658628951445138054446496873808274052610943018522851014346863445078634114510260261375} a^{4} + \frac{473995391951123900350641995154342335229161978848913899250393640657302482688185077966706}{2142658628951445138054446496873808274052610943018522851014346863445078634114510260261375} a^{3} - \frac{157047141833508435187832833828538150246403437157494068082230922614962809354560852677498}{2142658628951445138054446496873808274052610943018522851014346863445078634114510260261375} a^{2} - \frac{91963375591408690998233413080738566183269333003753223256786578290721117539020890661476}{428531725790289027610889299374761654810522188603704570202869372689015726822902052052275} a - \frac{40618558021148624347477273679755739942470250024649283912433428190309514945929422056816}{85706345158057805522177859874952330962104437720740914040573874537803145364580410410455}$
Class group and class number
$C_{2856068}$, which has order $2856068$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6698055135.71 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{89}) \), 4.4.119139761.1, 8.8.213496205355753436961.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||
| 89 | Data not computed | ||||||