Normalized defining polynomial
\( x^{16} - 8 x^{15} + 228 x^{14} - 1456 x^{13} + 20938 x^{12} - 107064 x^{11} + 993728 x^{10} - 4020968 x^{9} + 26143449 x^{8} - 81567920 x^{7} + 393089516 x^{6} - 909551832 x^{5} + 3650673056 x^{4} - 5873105256 x^{3} + 19910692468 x^{2} - 17113258880 x + 45036203521 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6845525354902535215356313600000000=2^{48}\cdot 5^{8}\cdot 53^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $130.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4240=2^{4}\cdot 5\cdot 53\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4240}(1,·)$, $\chi_{4240}(2119,·)$, $\chi_{4240}(2121,·)$, $\chi_{4240}(4239,·)$, $\chi_{4240}(849,·)$, $\chi_{4240}(211,·)$, $\chi_{4240}(2969,·)$, $\chi_{4240}(2331,·)$, $\chi_{4240}(1059,·)$, $\chi_{4240}(1061,·)$, $\chi_{4240}(3179,·)$, $\chi_{4240}(3181,·)$, $\chi_{4240}(1909,·)$, $\chi_{4240}(1271,·)$, $\chi_{4240}(4029,·)$, $\chi_{4240}(3391,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{27} a^{8} - \frac{4}{27} a^{7} - \frac{2}{27} a^{6} - \frac{7}{27} a^{5} - \frac{10}{27} a^{4} + \frac{1}{3} a^{3} - \frac{4}{9} a^{2} - \frac{2}{27} a - \frac{7}{27}$, $\frac{1}{27} a^{9} + \frac{1}{3} a^{7} + \frac{4}{9} a^{6} - \frac{11}{27} a^{5} - \frac{4}{27} a^{4} - \frac{1}{9} a^{3} + \frac{4}{27} a^{2} + \frac{4}{9} a - \frac{1}{27}$, $\frac{1}{10557} a^{10} - \frac{5}{10557} a^{9} + \frac{7}{459} a^{8} - \frac{614}{10557} a^{7} - \frac{1664}{3519} a^{6} - \frac{4010}{10557} a^{5} + \frac{244}{1173} a^{4} - \frac{1934}{10557} a^{3} - \frac{725}{10557} a^{2} - \frac{635}{10557} a - \frac{839}{3519}$, $\frac{1}{10557} a^{11} + \frac{8}{621} a^{9} + \frac{191}{10557} a^{8} + \frac{2495}{10557} a^{7} + \frac{2701}{10557} a^{6} + \frac{3260}{10557} a^{5} - \frac{1511}{10557} a^{4} + \frac{6}{391} a^{3} - \frac{1420}{3519} a^{2} + \frac{4865}{10557} a - \frac{676}{3519}$, $\frac{1}{10557} a^{12} + \frac{89}{10557} a^{9} + \frac{149}{10557} a^{8} + \frac{967}{10557} a^{7} + \frac{268}{10557} a^{6} + \frac{3878}{10557} a^{5} - \frac{76}{153} a^{4} + \frac{4223}{10557} a^{3} + \frac{2978}{10557} a^{2} + \frac{4177}{10557} a - \frac{32}{69}$, $\frac{1}{10557} a^{13} - \frac{188}{10557} a^{9} - \frac{4}{621} a^{8} + \frac{5257}{10557} a^{7} + \frac{157}{3519} a^{6} + \frac{3265}{10557} a^{5} - \frac{1441}{3519} a^{4} + \frac{500}{3519} a^{3} + \frac{353}{3519} a^{2} + \frac{5090}{10557} a + \frac{5053}{10557}$, $\frac{1}{8402310144618394143573} a^{14} - \frac{1}{1200330020659770591939} a^{13} - \frac{336889861960790345}{8402310144618394143573} a^{12} - \frac{366359079050374106}{8402310144618394143573} a^{11} - \frac{65122378452941578}{8402310144618394143573} a^{10} - \frac{3525957844836787511}{933590016068710460397} a^{9} - \frac{72649301398341648863}{8402310144618394143573} a^{8} + \frac{549089073284901848948}{1200330020659770591939} a^{7} - \frac{14108722333761005905}{35156109391708762107} a^{6} + \frac{3975600319593354676550}{8402310144618394143573} a^{5} - \frac{435511255835767050071}{8402310144618394143573} a^{4} - \frac{69971318338708085615}{2800770048206131381191} a^{3} + \frac{3763152316058381984092}{8402310144618394143573} a^{2} - \frac{3628355213562617806124}{8402310144618394143573} a - \frac{2430997033089096207595}{8402310144618394143573}$, $\frac{1}{435162372640212472029354671973} a^{15} + \frac{25895393}{435162372640212472029354671973} a^{14} + \frac{169798780060778566563814}{6306701052756702493179053217} a^{13} + \frac{2596002862793510821566266}{62166053234316067432764953139} a^{12} + \frac{19880439880166239529908072}{435162372640212472029354671973} a^{11} + \frac{1555182968488010754326165}{145054124213404157343118223991} a^{10} + \frac{528972597025533754742697943}{62166053234316067432764953139} a^{9} - \frac{4275533604348861700892937722}{435162372640212472029354671973} a^{8} + \frac{81894968645484448264838285822}{435162372640212472029354671973} a^{7} + \frac{16941067300246463008695858125}{62166053234316067432764953139} a^{6} + \frac{1067097916122196265236165546}{4679165297206585720745749161} a^{5} - \frac{11633570833233826682743059878}{25597786625894851295844392469} a^{4} - \frac{24351259623236780573256381487}{145054124213404157343118223991} a^{3} + \frac{47743272679534031957014242685}{145054124213404157343118223991} a^{2} - \frac{13371277683789567979558980862}{435162372640212472029354671973} a + \frac{169801752329822676643357382702}{435162372640212472029354671973}$
Class group and class number
$C_{6}\times C_{360528}$, which has order $2163168$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12198.951274811623 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $53$ | 53.8.4.1 | $x^{8} + 101124 x^{4} - 148877 x^{2} + 2556515844$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 53.8.4.1 | $x^{8} + 101124 x^{4} - 148877 x^{2} + 2556515844$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |