Normalized defining polynomial
\( x^{16} - 6 x^{15} + 136 x^{14} - 656 x^{13} + 8265 x^{12} - 32502 x^{11} + 294420 x^{10} - 939579 x^{9} + 6738726 x^{8} - 17057530 x^{7} + 101632369 x^{6} - 194147354 x^{5} + 987871066 x^{4} - 1282215295 x^{3} + 5669585782 x^{2} - 3792717441 x + 14754909041 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(68372792983010839504523425519489=17^{14}\cdot 67^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $97.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1139=17\cdot 67\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1139}(1,·)$, $\chi_{1139}(66,·)$, $\chi_{1139}(135,·)$, $\chi_{1139}(200,·)$, $\chi_{1139}(202,·)$, $\chi_{1139}(336,·)$, $\chi_{1139}(468,·)$, $\chi_{1139}(535,·)$, $\chi_{1139}(604,·)$, $\chi_{1139}(671,·)$, $\chi_{1139}(803,·)$, $\chi_{1139}(937,·)$, $\chi_{1139}(939,·)$, $\chi_{1139}(1004,·)$, $\chi_{1139}(1073,·)$, $\chi_{1139}(1138,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{900191283628083548049826945949707099505772786413974} a^{15} - \frac{61674795541850263374907175938007309647686240543929}{900191283628083548049826945949707099505772786413974} a^{14} - \frac{57352476894761825915989334468024778991376051667651}{450095641814041774024913472974853549752886393206987} a^{13} - \frac{11196518659279720025439280378744647334860816038687}{450095641814041774024913472974853549752886393206987} a^{12} + \frac{4788376214899156492773026842707609037781953020783}{900191283628083548049826945949707099505772786413974} a^{11} - \frac{81444085535341556416393319588870521488324614695004}{450095641814041774024913472974853549752886393206987} a^{10} - \frac{6862204295149885934998090453521981244750756710003}{34622741678003213386531805613450273057914337938999} a^{9} + \frac{265213768643047008289370135186150953024716251948635}{900191283628083548049826945949707099505772786413974} a^{8} - \frac{118702388610932392705538660877140564207930463991426}{450095641814041774024913472974853549752886393206987} a^{7} + \frac{27329918523207801454279563867596900993057656905281}{450095641814041774024913472974853549752886393206987} a^{6} - \frac{370673194337812866803115731613003027704747714561549}{900191283628083548049826945949707099505772786413974} a^{5} - \frac{1222303854633918791966437122763652660202479990350}{4369860600136327903154499737619937376241615468029} a^{4} - \frac{203213302353974155119022765325925573473604000842592}{450095641814041774024913472974853549752886393206987} a^{3} + \frac{417527312192923206872333238752881577904111385764991}{900191283628083548049826945949707099505772786413974} a^{2} - \frac{17075831075820143083403183725850784951142209469204}{34622741678003213386531805613450273057914337938999} a - \frac{48578439319609004337426408788602517673408632586833}{900191283628083548049826945949707099505772786413974}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{24}\times C_{480}$, which has order $368640$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.01221338 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-1139}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-67}) \), \(\Q(\sqrt{17}, \sqrt{-67})\), 4.4.4913.1, 4.0.22054457.2, 8.0.486399073564849.4, 8.0.8268784250602433.5, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $67$ | 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |