Normalized defining polynomial
\( x^{16} - 6 x^{15} - 58 x^{14} + 150 x^{13} + 434 x^{12} + 5860 x^{11} + 46774 x^{10} - 30432 x^{9} - 212804 x^{8} - 4397396 x^{7} - 40985220 x^{6} - 22418086 x^{5} + 574526983 x^{4} + 1738422858 x^{3} + 1971691906 x^{2} + 1453238270 x + 1651813193 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(68372792983010839504523425519489=17^{14}\cdot 67^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $97.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{104} a^{12} + \frac{1}{26} a^{11} + \frac{1}{52} a^{10} - \frac{11}{104} a^{9} + \frac{7}{104} a^{8} - \frac{5}{26} a^{7} - \frac{1}{104} a^{6} + \frac{11}{52} a^{5} + \frac{17}{104} a^{4} - \frac{41}{104} a^{3} - \frac{15}{104} a^{2} + \frac{33}{104} a + \frac{41}{104}$, $\frac{1}{104} a^{13} + \frac{3}{26} a^{11} + \frac{7}{104} a^{10} - \frac{1}{104} a^{9} + \frac{1}{26} a^{8} - \frac{25}{104} a^{7} - \frac{1}{4} a^{6} + \frac{7}{104} a^{5} + \frac{21}{104} a^{4} - \frac{33}{104} a^{3} - \frac{37}{104} a^{2} - \frac{3}{8} a - \frac{1}{13}$, $\frac{1}{104} a^{14} + \frac{11}{104} a^{11} + \frac{1}{104} a^{10} + \frac{3}{52} a^{9} - \frac{5}{104} a^{8} + \frac{3}{52} a^{7} + \frac{19}{104} a^{6} + \frac{17}{104} a^{5} - \frac{3}{104} a^{4} - \frac{3}{8} a^{3} - \frac{41}{104} a^{2} - \frac{7}{52} a - \frac{3}{13}$, $\frac{1}{100375850547163313566098818489329089440692663904105484501361064} a^{15} + \frac{354094663183938372676774360143133263104287800997914040333167}{100375850547163313566098818489329089440692663904105484501361064} a^{14} - \frac{336929056850018271259343011998797692712646631035921968564339}{100375850547163313566098818489329089440692663904105484501361064} a^{13} + \frac{233590905985311281413081997408256873072273094430068381405111}{100375850547163313566098818489329089440692663904105484501361064} a^{12} + \frac{558885179272254254263333446258200395834703657791183747349231}{25093962636790828391524704622332272360173165976026371125340266} a^{11} - \frac{963762836063777656607537476543570967652614470260230100425630}{12546981318395414195762352311166136180086582988013185562670133} a^{10} - \frac{5921839919236327366450348473096127807652862228255740754992859}{50187925273581656783049409244664544720346331952052742250680532} a^{9} - \frac{109509038591022516730640730286745384221809562724175797104729}{100375850547163313566098818489329089440692663904105484501361064} a^{8} + \frac{772637809508490165144075476054120627944939031364206354732129}{12546981318395414195762352311166136180086582988013185562670133} a^{7} - \frac{24533823085380022376254023480761759002777829125125265774563}{25093962636790828391524704622332272360173165976026371125340266} a^{6} + \frac{540403458693212593035793341390100120751736925920648747888165}{100375850547163313566098818489329089440692663904105484501361064} a^{5} - \frac{17236984044954762166848161485882139600889915992498504417646227}{100375850547163313566098818489329089440692663904105484501361064} a^{4} + \frac{38956498637027609202843310821743511530692474649653467949784609}{100375850547163313566098818489329089440692663904105484501361064} a^{3} - \frac{15803727395088818432321036823098421406657132559923372365469451}{50187925273581656783049409244664544720346331952052742250680532} a^{2} - \frac{41582566951954560747106910524660206399536743628767474835690215}{100375850547163313566098818489329089440692663904105484501361064} a - \frac{5100363816852858012126646788561384742309976483954541155712131}{12546981318395414195762352311166136180086582988013185562670133}$
Class group and class number
$C_{2}\times C_{4}\times C_{12}\times C_{24}$, which has order $2304$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1293672.85735 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^5.C_2.C_2$ (as 16T258):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_2^5.C_2.C_2$ |
| Character table for $C_2^5.C_2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.0.8268784250602433.5, 8.6.123414690307499.1, 8.2.1617217123.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{12}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $67$ | 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |