Normalized defining polynomial
\( x^{16} - 4 x^{15} - 86 x^{14} + 208 x^{13} + 3758 x^{12} - 4866 x^{11} - 91308 x^{10} + 39274 x^{9} + 1305907 x^{8} + 105532 x^{7} - 8912064 x^{6} + 5426132 x^{5} + 35639923 x^{4} - 98922188 x^{3} - 141482603 x^{2} + 495299900 x + 784570571 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(68372792983010839504523425519489=17^{14}\cdot 67^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $97.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{34} a^{8} - \frac{1}{17} a^{7} + \frac{3}{17} a^{6} + \frac{7}{17} a^{5} - \frac{15}{34} a^{4} - \frac{7}{17} a^{3} - \frac{11}{34} a^{2} - \frac{15}{34} a + \frac{1}{34}$, $\frac{1}{34} a^{9} + \frac{1}{17} a^{7} - \frac{4}{17} a^{6} + \frac{13}{34} a^{5} - \frac{5}{17} a^{4} - \frac{5}{34} a^{3} - \frac{3}{34} a^{2} + \frac{5}{34} a + \frac{1}{17}$, $\frac{1}{34} a^{10} - \frac{2}{17} a^{7} + \frac{1}{34} a^{6} - \frac{2}{17} a^{5} - \frac{9}{34} a^{4} - \frac{9}{34} a^{3} - \frac{7}{34} a^{2} - \frac{1}{17} a - \frac{1}{17}$, $\frac{1}{34} a^{11} - \frac{7}{34} a^{7} - \frac{7}{17} a^{6} + \frac{13}{34} a^{5} - \frac{1}{34} a^{4} + \frac{5}{34} a^{3} - \frac{6}{17} a^{2} + \frac{3}{17} a + \frac{2}{17}$, $\frac{1}{19618} a^{12} - \frac{27}{9809} a^{11} + \frac{105}{19618} a^{10} + \frac{217}{19618} a^{9} - \frac{245}{19618} a^{8} - \frac{3840}{9809} a^{7} - \frac{380}{9809} a^{6} + \frac{645}{9809} a^{5} + \frac{4235}{9809} a^{4} + \frac{34}{577} a^{3} - \frac{961}{9809} a^{2} + \frac{6641}{19618} a + \frac{2112}{9809}$, $\frac{1}{19618} a^{13} + \frac{37}{9809} a^{11} + \frac{117}{19618} a^{10} - \frac{67}{19618} a^{9} - \frac{69}{9809} a^{8} - \frac{6387}{19618} a^{7} - \frac{3142}{9809} a^{6} + \frac{4851}{19618} a^{5} - \frac{2487}{19618} a^{4} - \frac{8161}{19618} a^{3} + \frac{9021}{19618} a^{2} + \frac{1395}{9809} a - \frac{3083}{9809}$, $\frac{1}{922046} a^{14} + \frac{13}{922046} a^{13} + \frac{8}{461023} a^{12} - \frac{13099}{922046} a^{11} + \frac{4019}{922046} a^{10} + \frac{7177}{922046} a^{9} + \frac{2149}{461023} a^{8} - \frac{120477}{922046} a^{7} + \frac{158162}{461023} a^{6} + \frac{74235}{461023} a^{5} - \frac{92776}{461023} a^{4} + \frac{396147}{922046} a^{3} + \frac{198073}{922046} a^{2} + \frac{340211}{922046} a - \frac{352269}{922046}$, $\frac{1}{8180002858973166669509554612902150035692114} a^{15} + \frac{569286418960879694268854343362899133}{8180002858973166669509554612902150035692114} a^{14} - \frac{5170203249024394520759846498741757311}{4090001429486583334754777306451075017846057} a^{13} + \frac{84657250209294309831699026021797380573}{4090001429486583334754777306451075017846057} a^{12} + \frac{62075802312800225816551936441515778377207}{8180002858973166669509554612902150035692114} a^{11} - \frac{5119603814399128000221167448405425552262}{4090001429486583334754777306451075017846057} a^{10} - \frac{7064625466190053324132351965807391810800}{4090001429486583334754777306451075017846057} a^{9} - \frac{36655033940060517712514669055315087608825}{8180002858973166669509554612902150035692114} a^{8} + \frac{1625648538182559603811358664366517247541512}{4090001429486583334754777306451075017846057} a^{7} - \frac{539945096074422934962705399446879797984579}{4090001429486583334754777306451075017846057} a^{6} + \frac{451094457686943320682341410855409051189175}{8180002858973166669509554612902150035692114} a^{5} - \frac{171025528236812333720281562574570265752776}{4090001429486583334754777306451075017846057} a^{4} + \frac{1647987866770659656575990678906488919211920}{4090001429486583334754777306451075017846057} a^{3} - \frac{3857647934144397133870096431101019623046363}{8180002858973166669509554612902150035692114} a^{2} + \frac{632481199844340354374212961261004244407316}{4090001429486583334754777306451075017846057} a - \frac{1116344500458283136489602874733355160190535}{8180002858973166669509554612902150035692114}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{80}$, which has order $2560$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 726530.496253 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8: C_2$ |
| Character table for $C_8: C_2$ |
Intermediate fields
| \(\Q(\sqrt{-1139}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-67}) \), \(\Q(\sqrt{17}, \sqrt{-67})\), 4.4.4913.1, 4.0.22054457.2, 8.0.486399073564849.4, 8.4.1842010303097.2 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $67$ | 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |