Normalized defining polynomial
\( x^{16} - 4 x^{15} + 25 x^{14} - 19 x^{13} + 196 x^{12} - 153 x^{11} + 4469 x^{10} + 2832 x^{9} - 1277 x^{8} + 122499 x^{7} + 173528 x^{6} - 1660883 x^{5} + 2750234 x^{4} - 3001184 x^{3} - 24662408 x^{2} - 10625712 x + 149470784 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(68372792983010839504523425519489=17^{14}\cdot 67^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $97.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{3}{8} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{11} - \frac{1}{4} a^{6} + \frac{1}{8} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{12} - \frac{1}{4} a^{7} + \frac{1}{8} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{10} + \frac{3}{16} a^{7} - \frac{1}{4} a^{6} - \frac{3}{16} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{904384} a^{14} + \frac{23141}{904384} a^{13} - \frac{391}{17392} a^{12} + \frac{3591}{904384} a^{11} - \frac{41285}{904384} a^{10} - \frac{6791}{226096} a^{9} + \frac{4331}{904384} a^{8} + \frac{79531}{904384} a^{7} + \frac{177}{1087} a^{6} - \frac{5747}{904384} a^{5} - \frac{168195}{904384} a^{4} + \frac{12137}{28262} a^{3} - \frac{21643}{113048} a^{2} + \frac{38043}{113048} a + \frac{633}{28262}$, $\frac{1}{37245962058195973938063562324863566107785728} a^{15} - \frac{3361275754868249586205147554769042467}{18622981029097986969031781162431783053892864} a^{14} - \frac{957072791501969865274497742168353331291659}{37245962058195973938063562324863566107785728} a^{13} - \frac{346763810585625240219728063448007066425325}{37245962058195973938063562324863566107785728} a^{12} - \frac{444313678173467492804152239404364553851697}{18622981029097986969031781162431783053892864} a^{11} + \frac{877235714229267366542225543135319544731}{37245962058195973938063562324863566107785728} a^{10} - \frac{1192076497513136815663844037032936837919057}{37245962058195973938063562324863566107785728} a^{9} + \frac{38123641558883015082595763144730531639577}{18622981029097986969031781162431783053892864} a^{8} + \frac{5380962655803638686251139860277858016376463}{37245962058195973938063562324863566107785728} a^{7} + \frac{8499100136820336178275541292683221028518997}{37245962058195973938063562324863566107785728} a^{6} - \frac{4182838018175884260617454074025078445341577}{18622981029097986969031781162431783053892864} a^{5} - \frac{4474507370264839392830349553534842694989919}{37245962058195973938063562324863566107785728} a^{4} + \frac{929733712197160534956487040321791783072797}{4655745257274496742257945290607945763473216} a^{3} + \frac{640766678797278582173553026566741968358501}{2327872628637248371128972645303972881736608} a^{2} + \frac{1096909475547969955597095520145597073890283}{4655745257274496742257945290607945763473216} a + \frac{384753597476700411524291300190104072100385}{1163936314318624185564486322651986440868304}$
Class group and class number
$C_{2}\times C_{4}\times C_{4}\times C_{40}$, which has order $1280$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 86877550.428 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T41):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.2.329171.1, 4.0.22054457.2, 4.2.19363.1, 8.0.8268784250602433.1 x2, 8.0.486399073564849.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $67$ | 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |