Normalized defining polynomial
\( x^{16} - 26 x^{14} + 793 x^{12} + 14523 x^{10} + 30602 x^{8} + 76947 x^{6} + 5593912 x^{4} + 11927344 x^{2} + 7311616 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(68372792983010839504523425519489=17^{14}\cdot 67^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $97.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{7} + \frac{3}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{9} + \frac{3}{8} a^{3}$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{4} a^{7} + \frac{3}{16} a^{4} + \frac{5}{16} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a$, $\frac{1}{32} a^{11} - \frac{1}{32} a^{9} + \frac{1}{8} a^{7} - \frac{5}{32} a^{5} + \frac{13}{32} a^{3} - \frac{3}{8} a - \frac{1}{2}$, $\frac{1}{17152} a^{12} + \frac{407}{17152} a^{10} - \frac{1}{16} a^{9} + \frac{223}{4288} a^{8} - \frac{1253}{17152} a^{6} - \frac{3387}{17152} a^{4} + \frac{5}{16} a^{3} + \frac{1719}{4288} a^{2} + \frac{121}{268}$, $\frac{1}{445952} a^{13} - \frac{381}{34304} a^{11} - \frac{189}{8576} a^{9} + \frac{67355}{445952} a^{7} - \frac{6775}{34304} a^{5} - \frac{981}{8576} a^{3} - \frac{415}{6968} a$, $\frac{1}{588135043445745243136} a^{14} - \frac{1}{891904} a^{13} + \frac{1272295683698557}{45241157188134249472} a^{12} + \frac{381}{68608} a^{11} + \frac{647401492352922097}{22620578594067124736} a^{10} - \frac{883}{17152} a^{9} - \frac{28968952769886973933}{588135043445745243136} a^{8} - \frac{67355}{891904} a^{7} - \frac{8998428487830326297}{45241157188134249472} a^{6} + \frac{6775}{68608} a^{5} + \frac{457009581295779735}{22620578594067124736} a^{4} - \frac{2235}{17152} a^{3} - \frac{14323437732048332529}{73516880430718155392} a^{2} - \frac{6553}{13936} a + \frac{11232749946270161}{27188195425561448}$, $\frac{1}{7645755564794688160768} a^{15} + \frac{306440248069149}{294067521722872621568} a^{13} - \frac{1}{34304} a^{12} - \frac{5335616726212560051}{588135043445745243136} a^{11} + \frac{665}{34304} a^{10} + \frac{367727311084114117359}{7645755564794688160768} a^{9} + \frac{313}{8576} a^{8} - \frac{52154820141301300949}{294067521722872621568} a^{7} + \frac{1253}{34304} a^{6} + \frac{131095106075550330991}{588135043445745243136} a^{5} + \frac{6603}{34304} a^{4} + \frac{462045726300681545389}{1911438891198672040192} a^{3} + \frac{2033}{8576} a^{2} + \frac{254224576197372889}{706893081064597648} a + \frac{147}{536}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{80}$, which has order $2560$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5393311.71147 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T36):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-1139}) \), \(\Q(\sqrt{-67}) \), 4.0.22054457.2, 4.4.4913.1, \(\Q(\sqrt{17}, \sqrt{-67})\), 8.0.8268784250602433.1 x2, 8.4.1842010303097.1 x2, 8.0.486399073564849.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $67$ | 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |