Normalized defining polynomial
\( x^{16} - 6 x^{15} - 30 x^{14} + 224 x^{13} + 357 x^{12} - 3436 x^{11} + 1144 x^{10} + 10255 x^{9} + 19212 x^{8} - 8134 x^{7} - 227593 x^{6} + 274328 x^{5} + 2443546 x^{4} + 2922833 x^{3} + 5300006 x^{2} - 2133395 x + 5248717 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(68372792983010839504523425519489=17^{14}\cdot 67^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $97.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{26} a^{13} - \frac{1}{26} a^{12} - \frac{2}{13} a^{11} - \frac{5}{26} a^{10} + \frac{9}{26} a^{9} - \frac{1}{26} a^{7} + \frac{3}{26} a^{6} + \frac{4}{13} a^{5} + \frac{3}{26} a^{4} - \frac{1}{2} a^{3} + \frac{5}{13} a^{2} + \frac{11}{26} a + \frac{5}{26}$, $\frac{1}{1229278882} a^{14} + \frac{9816871}{1229278882} a^{13} - \frac{132678069}{1229278882} a^{12} + \frac{582503215}{1229278882} a^{11} + \frac{149190557}{1229278882} a^{10} + \frac{14697737}{94559914} a^{9} + \frac{300225327}{1229278882} a^{8} - \frac{61615681}{1229278882} a^{7} - \frac{475815111}{1229278882} a^{6} + \frac{2814841}{1229278882} a^{5} + \frac{44991017}{94559914} a^{4} - \frac{378120343}{1229278882} a^{3} + \frac{545708473}{1229278882} a^{2} + \frac{323882551}{1229278882} a - \frac{190219}{94559914}$, $\frac{1}{25241236618452841528081550123793745709689838} a^{15} + \frac{7339649638444654554513487362180721}{25241236618452841528081550123793745709689838} a^{14} + \frac{298580168930847617333809331197578838501347}{25241236618452841528081550123793745709689838} a^{13} + \frac{3248030188662188950288342940388092078647481}{25241236618452841528081550123793745709689838} a^{12} - \frac{9864430263063541472423553096803938128299573}{25241236618452841528081550123793745709689838} a^{11} + \frac{109196998515344439035300872161717871645603}{25241236618452841528081550123793745709689838} a^{10} - \frac{8729935608403802276471865918999363418231227}{25241236618452841528081550123793745709689838} a^{9} - \frac{9756993213666914470281751369867110749985755}{25241236618452841528081550123793745709689838} a^{8} - \frac{6406595134974671719695565076795648856800041}{25241236618452841528081550123793745709689838} a^{7} - \frac{4494390707076216326454599741412149512804689}{25241236618452841528081550123793745709689838} a^{6} + \frac{7221275720447806383318206007932387550315891}{25241236618452841528081550123793745709689838} a^{5} + \frac{2527026994209702963409334606468051259528623}{25241236618452841528081550123793745709689838} a^{4} - \frac{1488064070749486520373716657156128547777583}{25241236618452841528081550123793745709689838} a^{3} + \frac{2881058404374057442857779571351005821564699}{25241236618452841528081550123793745709689838} a^{2} - \frac{1086768693102356202050014343616847974500061}{25241236618452841528081550123793745709689838} a - \frac{2716023878856026229012893836469773326114552}{12620618309226420764040775061896872854844919}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{12}\times C_{12}$, which has order $1152$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1910768.12169 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_8$ (as 16T24):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2^2 : C_8$ |
| Character table for $C_2^2 : C_8$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.2.329171.1, 4.4.4913.1, 4.2.19363.1, 8.0.8268784250602433.5, 8.4.1842010303097.2, 8.4.108353547241.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $67$ | 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |