Normalized defining polynomial
\( x^{16} + 984 x^{14} + 338004 x^{12} + 50107248 x^{10} + 3459851010 x^{8} + 116832673728 x^{6} + 1884328811136 x^{4} + 12656515700736 x^{2} + 18984773551104 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(682709662540737066595680412797349253873664=2^{62}\cdot 3^{8}\cdot 41^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $411.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3936=2^{5}\cdot 3\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3936}(1,·)$, $\chi_{3936}(3845,·)$, $\chi_{3936}(2953,·)$, $\chi_{3936}(2861,·)$, $\chi_{3936}(1877,·)$, $\chi_{3936}(409,·)$, $\chi_{3936}(985,·)$, $\chi_{3936}(2141,·)$, $\chi_{3936}(1157,·)$, $\chi_{3936}(3361,·)$, $\chi_{3936}(1969,·)$, $\chi_{3936}(173,·)$, $\chi_{3936}(1393,·)$, $\chi_{3936}(3125,·)$, $\chi_{3936}(2377,·)$, $\chi_{3936}(893,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{369} a^{4}$, $\frac{1}{369} a^{5}$, $\frac{1}{1107} a^{6}$, $\frac{1}{1107} a^{7}$, $\frac{1}{1361610} a^{8} + \frac{2}{5535} a^{6} + \frac{1}{15} a^{2} + \frac{1}{5}$, $\frac{1}{2723220} a^{9} + \frac{1}{5535} a^{7} - \frac{2}{15} a^{3} + \frac{1}{10} a$, $\frac{1}{16339320} a^{10} + \frac{1}{11070} a^{6} - \frac{1}{1845} a^{4} - \frac{1}{20} a^{2} - \frac{1}{5}$, $\frac{1}{32678640} a^{11} + \frac{1}{22140} a^{7} + \frac{2}{1845} a^{5} + \frac{17}{120} a^{3} + \frac{2}{5} a$, $\frac{1}{8038945440} a^{12} + \frac{1}{5446440} a^{8} - \frac{1}{3690} a^{6} + \frac{17}{29520} a^{4} - \frac{1}{10} a^{2}$, $\frac{1}{16077890880} a^{13} + \frac{1}{10892880} a^{9} + \frac{7}{22140} a^{7} - \frac{7}{6560} a^{5} + \frac{7}{60} a^{3} - \frac{1}{2} a$, $\frac{1}{187416854877329280} a^{14} - \frac{666763}{15618071239777440} a^{12} + \frac{70627}{3627891112608} a^{10} + \frac{79543}{2645337269610} a^{8} + \frac{310819553}{688217826240} a^{6} - \frac{40691173}{57351485520} a^{4} + \frac{492253}{3760260} a^{2} + \frac{4503096}{9714005}$, $\frac{1}{374833709754658560} a^{15} - \frac{666763}{31236142479554880} a^{13} + \frac{70627}{7255782225216} a^{11} + \frac{79543}{5290674539220} a^{9} + \frac{310819553}{1376435652480} a^{7} + \frac{114732907}{114702971040} a^{5} - \frac{761167}{7520520} a^{3} + \frac{2251548}{9714005} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{77529736}$, which has order $1240475776$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 640752.4929130975 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.31.6 | $x^{8} + 16 x^{7} + 28 x^{4} + 16 x^{3} + 2$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ |
| 2.8.31.6 | $x^{8} + 16 x^{7} + 28 x^{4} + 16 x^{3} + 2$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ | |
| $3$ | 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| $41$ | 41.8.6.2 | $x^{8} + 943 x^{4} + 242064$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 41.8.6.2 | $x^{8} + 943 x^{4} + 242064$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |