Normalized defining polynomial
\( x^{16} - 6 x^{15} + 53 x^{14} - 131 x^{13} + 1075 x^{12} - 1163 x^{11} + 17093 x^{10} - 1561 x^{9} + 156705 x^{8} + 53505 x^{7} + 1078359 x^{6} - 229641 x^{5} + 5768725 x^{4} - 2814377 x^{3} + 16674731 x^{2} - 6159188 x + 19185895 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(68157975826732896644627006991473=17^{15}\cdot 47^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $97.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{10} a^{14} + \frac{3}{10} a^{13} - \frac{3}{10} a^{12} + \frac{3}{10} a^{11} + \frac{1}{10} a^{10} - \frac{3}{10} a^{9} + \frac{3}{10} a^{8} - \frac{1}{2} a^{7} + \frac{1}{10} a^{6} - \frac{1}{10} a^{5} - \frac{3}{10} a^{4} - \frac{1}{2} a^{3} - \frac{1}{10} a^{2} - \frac{1}{10} a - \frac{1}{2}$, $\frac{1}{6146374507611745796492889666386790152103245730970510} a^{15} - \frac{531054771747790516346044309831951486264919025821}{91736932949429041738699845766967017195570831805530} a^{14} + \frac{738153558476232797502054457137511409300559276259407}{6146374507611745796492889666386790152103245730970510} a^{13} + \frac{821087198065629483011122606724836213822199522063473}{6146374507611745796492889666386790152103245730970510} a^{12} - \frac{1032690541299977205563793706004373231353309777624389}{6146374507611745796492889666386790152103245730970510} a^{11} - \frac{2382201532450583147518992663070183865618019783562563}{6146374507611745796492889666386790152103245730970510} a^{10} + \frac{823297276598028844338353951281992115171891884695813}{6146374507611745796492889666386790152103245730970510} a^{9} - \frac{436795418460678541444267817240287131446358517048061}{1229274901522349159298577933277358030420649146194102} a^{8} + \frac{321175496244263369511729411223218372196479313010911}{6146374507611745796492889666386790152103245730970510} a^{7} - \frac{79902938490755318638904945790136337831959580972019}{323493395137460305078573140336146850110697143735290} a^{6} - \frac{952798277768062320182874053514391377589956638121493}{6146374507611745796492889666386790152103245730970510} a^{5} + \frac{41978949508947527162465561696901007555027916949987}{1229274901522349159298577933277358030420649146194102} a^{4} - \frac{573988432847595528956726664772494700741744072738991}{6146374507611745796492889666386790152103245730970510} a^{3} - \frac{323295148696161650782538522074469860314921139963121}{6146374507611745796492889666386790152103245730970510} a^{2} - \frac{11679480736696715811858589817847689184252692696901}{64698679027492061015714628067229370022139428747058} a - \frac{128351097543313042103608857584693165906564692172672}{614637450761174579649288966638679015210324573097051}$
Class group and class number
$C_{8}\times C_{16}$, which has order $128$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 33651486.7879 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $D_{16}$ |
| Character table for $D_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-799}) \), 4.0.10852817.1, 8.0.2002321826203313.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $47$ | 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |