Normalized defining polynomial
\( x^{16} - x^{15} + 18 x^{14} - 120 x^{13} + 562 x^{12} - 2653 x^{11} + 11578 x^{10} - 42501 x^{9} + 182717 x^{8} - 553249 x^{7} + 1972426 x^{6} - 4224297 x^{5} + 8773684 x^{4} - 14208448 x^{3} + 17704192 x^{2} - 13786253 x + 6662675 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(68157975826732896644627006991473=17^{15}\cdot 47^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $97.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{8} a^{10} + \frac{1}{8} a^{7} + \frac{1}{8} a^{6} + \frac{3}{8} a^{5} + \frac{3}{8} a^{4} - \frac{1}{8} a^{3} - \frac{1}{4} a + \frac{3}{8}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{3}{8} a^{5} + \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} + \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{32} a^{12} + \frac{1}{32} a^{11} + \frac{1}{32} a^{10} - \frac{3}{32} a^{9} + \frac{1}{16} a^{8} - \frac{7}{32} a^{7} + \frac{7}{32} a^{6} - \frac{15}{32} a^{5} + \frac{3}{16} a^{4} - \frac{3}{32} a^{3} + \frac{13}{32} a^{2} + \frac{1}{32} a - \frac{1}{32}$, $\frac{1}{32} a^{13} - \frac{3}{32} a^{9} - \frac{1}{32} a^{8} + \frac{1}{16} a^{7} - \frac{1}{16} a^{6} - \frac{7}{32} a^{5} + \frac{3}{32} a^{4} + \frac{3}{8} a^{3} - \frac{1}{8} a^{2} + \frac{7}{16} a + \frac{13}{32}$, $\frac{1}{256} a^{14} - \frac{1}{128} a^{13} - \frac{1}{256} a^{12} - \frac{13}{256} a^{11} - \frac{3}{64} a^{10} - \frac{1}{8} a^{9} - \frac{5}{128} a^{8} + \frac{5}{256} a^{7} + \frac{5}{128} a^{6} + \frac{3}{64} a^{5} + \frac{19}{64} a^{4} - \frac{17}{256} a^{3} + \frac{9}{256} a^{2} - \frac{17}{64} a - \frac{89}{256}$, $\frac{1}{136311358867398436000414204446212721746603776} a^{15} + \frac{101149628802377344611807969164081741295145}{136311358867398436000414204446212721746603776} a^{14} - \frac{847972746486053633967674387703584218513167}{136311358867398436000414204446212721746603776} a^{13} + \frac{12599922255044818609853669212241259433965}{8519459929212402250025887777888295109162736} a^{12} + \frac{653523311064037713516212772772772308722823}{12391941715218039636401291313292065613327616} a^{11} + \frac{1260280248354370238123455516872812231374409}{34077839716849609000103551111553180436650944} a^{10} + \frac{375719150644742025844139460781895402072281}{6195970857609019818200645656646032806663808} a^{9} - \frac{7958785697344706457063572312322651043472545}{136311358867398436000414204446212721746603776} a^{8} - \frac{29063172683155643665026641391203576036593607}{136311358867398436000414204446212721746603776} a^{7} + \frac{1344150083761148929416755904525033406555539}{6195970857609019818200645656646032806663808} a^{6} + \frac{1412214510476793147536110221911960209376481}{4259729964606201125012943888944147554581368} a^{5} - \frac{50071365205105266201132231821458517930234309}{136311358867398436000414204446212721746603776} a^{4} - \frac{8016237324599321418707353361921768404299941}{68155679433699218000207102223106360873301888} a^{3} + \frac{61261658217392259007004374185361629111810567}{136311358867398436000414204446212721746603776} a^{2} - \frac{50669311845127804360064649366639333341688717}{136311358867398436000414204446212721746603776} a - \frac{2099116894595411732028875253808214362508749}{4397140608625756000013361433748797475696896}$
Class group and class number
$C_{4}\times C_{160}$, which has order $640$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 28502147.7233 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T260):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-799}) \), 4.0.10852817.1, 8.0.2002321826203313.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $47$ | 47.8.4.1 | $x^{8} + 172302 x^{4} - 103823 x^{2} + 7421994801$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 47.8.4.1 | $x^{8} + 172302 x^{4} - 103823 x^{2} + 7421994801$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |