Normalized defining polynomial
\( x^{16} - 8 x^{15} + 24 x^{14} - 28 x^{13} + 102 x^{12} - 612 x^{11} + 1852 x^{10} - 3364 x^{9} + 3849 x^{8} - 2516 x^{7} + 628 x^{6} + 144 x^{5} + 851 x^{4} - 1830 x^{3} + 433 x^{2} + 474 x + 67 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6810271162553824314519361=31^{8}\cdot 41^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $31, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{10} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{3}{10} a^{4} - \frac{1}{5} a^{3} - \frac{1}{10} a^{2} - \frac{3}{10} a + \frac{1}{10}$, $\frac{1}{10} a^{9} + \frac{1}{10} a^{5} - \frac{2}{5} a^{4} + \frac{1}{10} a^{3} + \frac{3}{10} a^{2} - \frac{1}{10} a + \frac{2}{5}$, $\frac{1}{10} a^{10} + \frac{1}{10} a^{6} - \frac{2}{5} a^{5} + \frac{1}{10} a^{4} + \frac{3}{10} a^{3} - \frac{1}{10} a^{2} + \frac{2}{5} a$, $\frac{1}{10} a^{11} + \frac{1}{10} a^{7} - \frac{2}{5} a^{6} + \frac{1}{10} a^{5} + \frac{3}{10} a^{4} - \frac{1}{10} a^{3} + \frac{2}{5} a^{2}$, $\frac{1}{10} a^{12} - \frac{1}{2} a^{6} - \frac{3}{10} a^{5} + \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{10} a^{2} + \frac{3}{10} a - \frac{1}{10}$, $\frac{1}{10} a^{13} - \frac{1}{2} a^{7} - \frac{3}{10} a^{6} + \frac{1}{5} a^{5} - \frac{2}{5} a^{4} + \frac{1}{10} a^{3} + \frac{3}{10} a^{2} - \frac{1}{10} a$, $\frac{1}{781982750} a^{14} - \frac{7}{781982750} a^{13} - \frac{2648872}{78198275} a^{12} + \frac{2535861}{781982750} a^{11} + \frac{14128689}{390991375} a^{10} - \frac{34201991}{781982750} a^{9} + \frac{1064143}{31279310} a^{8} + \frac{126692403}{781982750} a^{7} - \frac{115420973}{781982750} a^{6} - \frac{6938038}{15639655} a^{5} - \frac{138130998}{390991375} a^{4} - \frac{101556251}{390991375} a^{3} - \frac{175661849}{781982750} a^{2} + \frac{21197797}{78198275} a - \frac{158005092}{390991375}$, $\frac{1}{75852326750} a^{15} + \frac{1}{1850056750} a^{14} - \frac{2919825231}{75852326750} a^{13} - \frac{1268922699}{75852326750} a^{12} + \frac{856972103}{37926163375} a^{11} - \frac{1880367861}{37926163375} a^{10} - \frac{138219891}{3297927250} a^{9} - \frac{1214025736}{37926163375} a^{8} + \frac{15533730323}{37926163375} a^{7} - \frac{4038330152}{37926163375} a^{6} - \frac{10731526573}{37926163375} a^{5} - \frac{1502765381}{7585232675} a^{4} + \frac{7336221991}{15170465350} a^{3} - \frac{5350491}{19072750} a^{2} + \frac{18770560863}{37926163375} a - \frac{2578566557}{75852326750}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 324217.745672 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.SD_{16}$ (as 16T163):
| A solvable group of order 64 |
| The 19 conjugacy class representatives for $C_2^2.SD_{16}$ |
| Character table for $C_2^2.SD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-31}) \), 4.0.39401.1, 8.0.63649990841.1, 8.0.63649990841.2, 8.0.2609649624481.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $31$ | 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $41$ | 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41.8.6.1 | $x^{8} - 9881 x^{4} + 34857216$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |