Normalized defining polynomial
\( x^{16} - 6 x^{15} + 451 x^{14} - 2524 x^{13} + 76128 x^{12} - 427776 x^{11} + 6492584 x^{10} - 34976022 x^{9} + 321152208 x^{8} - 1407931996 x^{7} + 9453260051 x^{6} - 27067446942 x^{5} + 145236326283 x^{4} - 218586158402 x^{3} + 863745327204 x^{2} - 523452247142 x + 1203481647881 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6788684232836496753984400000000000000=2^{16}\cdot 5^{14}\cdot 61^{8}\cdot 97^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $200.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{346749853507749690947028468414836531463159826899668033288108768230488300436289055933199421} a^{15} + \frac{19937740233630881201064202704406034484202337278025296028251380124224083878444652683821611}{346749853507749690947028468414836531463159826899668033288108768230488300436289055933199421} a^{14} + \frac{139690294322420154704976930012823626725678267025000596302573394518010934942585779617965554}{346749853507749690947028468414836531463159826899668033288108768230488300436289055933199421} a^{13} + \frac{145585779868732168243613981080258031339056097225105253910311511852910072070866377768746456}{346749853507749690947028468414836531463159826899668033288108768230488300436289055933199421} a^{12} - \frac{28990908368428605523960060166860670127327084313577543208929676897361362681753427635300901}{346749853507749690947028468414836531463159826899668033288108768230488300436289055933199421} a^{11} + \frac{150279409036091310848152036425702633513450888789086807747429841378922030172805555682192072}{346749853507749690947028468414836531463159826899668033288108768230488300436289055933199421} a^{10} + \frac{32140166789904513910702849639849292351300333341161552862029605635548212899461390846624038}{346749853507749690947028468414836531463159826899668033288108768230488300436289055933199421} a^{9} - \frac{10026488091267041734063259211215678319144092307358110809539418215031136862035308315714156}{346749853507749690947028468414836531463159826899668033288108768230488300436289055933199421} a^{8} - \frac{156151879613997179314244441414102859657825968843270612288199425571787217308625216630888520}{346749853507749690947028468414836531463159826899668033288108768230488300436289055933199421} a^{7} + \frac{156500716297649423686338871331209432891431126897271308391609470234628933635150340238284901}{346749853507749690947028468414836531463159826899668033288108768230488300436289055933199421} a^{6} + \frac{165153227842349642655982258947846481968847760152144300297190545338363789214343606171993777}{346749853507749690947028468414836531463159826899668033288108768230488300436289055933199421} a^{5} - \frac{50010729784239198883738346834626036890773365427768166573173975548087300569473887354102989}{346749853507749690947028468414836531463159826899668033288108768230488300436289055933199421} a^{4} - \frac{42421551608345148104971159447612987190727389268935705606214009100989636605425102424947549}{346749853507749690947028468414836531463159826899668033288108768230488300436289055933199421} a^{3} + \frac{72391206907412781184774750169718485831380068427504858946326485985332393807959156144815895}{346749853507749690947028468414836531463159826899668033288108768230488300436289055933199421} a^{2} - \frac{29352414865230013976100852507948594519499282869338172008970028269357293395350858328317888}{346749853507749690947028468414836531463159826899668033288108768230488300436289055933199421} a - \frac{57513513181823237589809959399075141177736071832905898207494975731874569389598556898916442}{346749853507749690947028468414836531463159826899668033288108768230488300436289055933199421}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{1047180}$, which has order $16754880$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26657.4092537 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 41 conjugacy class representatives for t16n852 |
| Character table for t16n852 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 8.8.14884000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 61 | Data not computed | ||||||
| $97$ | 97.8.0.1 | $x^{8} - x + 84$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 97.8.4.2 | $x^{8} - 912673 x^{2} + 2036173463$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |