Normalized defining polynomial
\( x^{16} - 2x^{14} - 4x^{12} + 10x^{10} + 3x^{8} - 12x^{6} - x^{4} + 5x^{2} + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(6788091008176384\)
\(\medspace = 2^{8}\cdot 47^{2}\cdot 331^{4}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(9.76\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{7/4}47^{1/2}331^{1/2}\approx 419.53231474906187$ | ||
Ramified primes: |
\(2\), \(47\), \(331\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{14}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{15}-\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$3a^{14}-8a^{12}-6a^{10}+33a^{8}-16a^{6}-21a^{4}+14a^{2}+3$, $5a^{14}-14a^{12}-9a^{10}+57a^{8}-30a^{6}-35a^{4}+23a^{2}+5$, $\frac{5}{2}a^{15}-3a^{14}-\frac{15}{2}a^{13}+9a^{12}-\frac{7}{2}a^{11}+\frac{9}{2}a^{10}+30a^{9}-37a^{8}-19a^{7}+22a^{6}-\frac{35}{2}a^{5}+25a^{4}+\frac{27}{2}a^{3}-17a^{2}+\frac{5}{2}a-\frac{11}{2}$, $2a^{15}-\frac{11}{2}a^{14}-5a^{13}+15a^{12}-5a^{11}+\frac{21}{2}a^{10}+\frac{43}{2}a^{9}-\frac{123}{2}a^{8}-\frac{13}{2}a^{7}+\frac{61}{2}a^{6}-\frac{33}{2}a^{5}+39a^{4}+\frac{13}{2}a^{3}-\frac{49}{2}a^{2}+\frac{7}{2}a-6$, $a$, $\frac{5}{2}a^{15}-3a^{14}-7a^{13}+\frac{15}{2}a^{12}-4a^{11}+7a^{10}+28a^{9}-\frac{63}{2}a^{8}-17a^{7}+\frac{23}{2}a^{6}-\frac{31}{2}a^{5}+\frac{43}{2}a^{4}+13a^{3}-11a^{2}+2a-\frac{7}{2}$, $\frac{5}{2}a^{15}+3a^{14}-7a^{13}-\frac{15}{2}a^{12}-4a^{11}-7a^{10}+28a^{9}+\frac{63}{2}a^{8}-17a^{7}-\frac{23}{2}a^{6}-\frac{31}{2}a^{5}-\frac{43}{2}a^{4}+13a^{3}+11a^{2}+2a+\frac{7}{2}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 11.7319712743 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 11.7319712743 \cdot 1}{2\cdot\sqrt{6788091008176384}}\cr\approx \mathstrut & 0.172944244706 \end{aligned}\]
Galois group
$C_2\wr C_2^3.S_4$ (as 16T1852):
A solvable group of order 49152 |
The 116 conjugacy class representatives for $C_2\wr C_2^3.S_4$ |
Character table for $C_2\wr C_2^3.S_4$ |
Intermediate fields
4.2.331.1, 8.2.5149367.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | 16.2.36973431874322432.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.3.0.1}{3} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ | ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.4.0.1}{4} }$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{5}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.12.0.1}{12} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.8.0.1}{8} }^{2}$ | ${\href{/padicField/43.6.0.1}{6} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x^{2} + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
2.8.8.6 | $x^{8} + 2 x^{7} + 24 x^{6} + 84 x^{5} + 264 x^{4} + 408 x^{3} + 384 x^{2} - 208 x + 80$ | $2$ | $4$ | $8$ | $(C_8:C_2):C_2$ | $[2, 2, 2]^{4}$ | |
\(47\)
| 47.2.0.1 | $x^{2} + 45 x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
47.2.0.1 | $x^{2} + 45 x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
47.4.2.1 | $x^{4} + 90 x^{3} + 2129 x^{2} + 4680 x + 96939$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
47.4.0.1 | $x^{4} + 8 x^{2} + 40 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
47.4.0.1 | $x^{4} + 8 x^{2} + 40 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
\(331\)
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $4$ | $2$ | $2$ | $2$ | ||||
Deg $4$ | $2$ | $2$ | $2$ |