Normalized defining polynomial
\( x^{16} - 4 x^{15} + 16 x^{14} - 44 x^{13} + 98 x^{12} - 156 x^{11} + 460 x^{10} - 828 x^{9} + 18 x^{8} - 2324 x^{7} + 2952 x^{6} + 3708 x^{5} + 10494 x^{4} + 6292 x^{3} + 7220 x^{2} + 2412 x + 2521 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6765845231016345600000000=2^{40}\cdot 3^{8}\cdot 5^{8}\cdot 7^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{6} a^{10} + \frac{1}{6} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{4} - \frac{1}{2} a^{2} - \frac{1}{3} a + \frac{1}{6}$, $\frac{1}{6} a^{11} + \frac{1}{6} a^{9} + \frac{1}{6} a^{8} + \frac{1}{3} a^{5} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} + \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{6} a^{12} + \frac{1}{6} a^{9} - \frac{1}{6} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{6} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{6} a - \frac{1}{6}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{9} + \frac{1}{6} a^{8} - \frac{1}{3} a^{7} + \frac{1}{6} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{6} a - \frac{1}{6}$, $\frac{1}{6} a^{14} + \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{3} a^{7} + \frac{1}{6} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a + \frac{1}{6}$, $\frac{1}{3815572732780284670926582} a^{15} - \frac{28719299493238921893919}{1907786366390142335463291} a^{14} + \frac{49415451854767582530227}{635928788796714111821097} a^{13} - \frac{128217816814649055340193}{3815572732780284670926582} a^{12} - \frac{133195021411347756209854}{1907786366390142335463291} a^{11} + \frac{748187347188897630593}{19769806905597329901174} a^{10} - \frac{409018753779876147181880}{1907786366390142335463291} a^{9} + \frac{213515425129032376456921}{3815572732780284670926582} a^{8} + \frac{507814608937739677563005}{3815572732780284670926582} a^{7} + \frac{240158998450039227340192}{1907786366390142335463291} a^{6} - \frac{842944424670935582800975}{1907786366390142335463291} a^{5} + \frac{1343789993619805034412737}{3815572732780284670926582} a^{4} + \frac{124765687912456011752045}{1907786366390142335463291} a^{3} + \frac{109404226453407238173029}{1271857577593428223642194} a^{2} + \frac{124887754441708047131059}{1907786366390142335463291} a - \frac{1573925968464148985808809}{3815572732780284670926582}$
Class group and class number
$C_{2}\times C_{2}\times C_{10}$, which has order $40$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15197.4244561 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_4:C_2$ (as 16T18):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2 \times (C_4\times C_2):C_2$ |
| Character table for $C_2 \times (C_4\times C_2):C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $7$ | 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |