Normalized defining polynomial
\( x^{16} - 8 x^{15} + 32 x^{14} - 66 x^{13} + 79 x^{12} - 114 x^{11} + 562 x^{10} - 1558 x^{9} + 2325 x^{8} - 1212 x^{7} + 224 x^{6} - 1736 x^{5} + 6316 x^{4} - 8288 x^{3} + 6272 x^{2} - 3136 x + 784 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(674676505885957534253056=2^{24}\cdot 7^{8}\cdot 17^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{112} a^{12} - \frac{1}{8} a^{11} + \frac{1}{56} a^{10} + \frac{17}{56} a^{9} - \frac{45}{112} a^{8} - \frac{3}{14} a^{7} + \frac{3}{28} a^{6} - \frac{3}{8} a^{5} - \frac{51}{112} a^{4} - \frac{19}{56} a^{3} + \frac{25}{56} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{112} a^{13} - \frac{13}{56} a^{11} + \frac{3}{56} a^{10} - \frac{17}{112} a^{9} + \frac{9}{56} a^{8} - \frac{11}{28} a^{7} - \frac{3}{8} a^{6} + \frac{33}{112} a^{5} + \frac{2}{7} a^{4} + \frac{11}{56} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{162848} a^{14} - \frac{99}{40712} a^{13} - \frac{27}{40712} a^{12} - \frac{12167}{81424} a^{11} - \frac{1997}{162848} a^{10} + \frac{5147}{11632} a^{9} + \frac{163}{81424} a^{8} + \frac{9871}{81424} a^{7} - \frac{71567}{162848} a^{6} - \frac{1647}{20356} a^{5} - \frac{10181}{40712} a^{4} - \frac{6103}{40712} a^{3} - \frac{7649}{20356} a^{2} - \frac{246}{727} a - \frac{515}{2908}$, $\frac{1}{121255800062201952} a^{15} + \frac{62165611147}{60627900031100976} a^{14} + \frac{8377048881295}{4330564287935784} a^{13} - \frac{167963586450799}{60627900031100976} a^{12} - \frac{15582755655806569}{121255800062201952} a^{11} - \frac{1161486314349943}{7578487503887622} a^{10} - \frac{2295131124222533}{20209300010366992} a^{9} - \frac{332170062280481}{8661128575871568} a^{8} - \frac{31914346428336595}{121255800062201952} a^{7} + \frac{19628128264042933}{60627900031100976} a^{6} - \frac{1588207692723587}{30313950015550488} a^{5} + \frac{15655101414095}{41697317765544} a^{4} - \frac{60799520617768}{1263081250647937} a^{3} + \frac{3742471129016815}{7578487503887622} a^{2} - \frac{8831154534393}{721760714655964} a + \frac{59216945897849}{1082641071983946}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{27347834471}{10424329441386} a^{15} + \frac{788656953185}{41697317765544} a^{14} - \frac{206830209181}{2978379840396} a^{13} + \frac{634887911342}{5212164720693} a^{12} - \frac{2599257882149}{20848658882772} a^{11} + \frac{9454715606303}{41697317765544} a^{10} - \frac{4584876596879}{3474776480462} a^{9} + \frac{64227188993047}{20848658882772} a^{8} - \frac{81438646965545}{20848658882772} a^{7} + \frac{32225862299885}{41697317765544} a^{6} - \frac{16532329235665}{20848658882772} a^{5} + \frac{21009474254452}{5212164720693} a^{4} - \frac{45646191795649}{3474776480462} a^{3} + \frac{67388158870694}{5212164720693} a^{2} - \frac{2312874247605}{248198320033} a + \frac{2648043261850}{744594960099} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 265528.345569 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_4$ (as 16T61):
| A solvable group of order 48 |
| The 10 conjugacy class representatives for $C_2\times S_4$ |
| Character table for $C_2\times S_4$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{7}) \), 4.4.32368.1, \(\Q(i, \sqrt{7})\), 8.8.821386940416.1, 8.0.16762998784.2, 8.0.51336683776.7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 siblings: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 12 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.13 | $x^{8} + 12 x^{4} + 16$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ |
| 2.8.12.13 | $x^{8} + 12 x^{4} + 16$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |