Normalized defining polynomial
\( x^{16} - 2 x^{15} - 6 x^{14} - 12 x^{13} - 7 x^{12} + 78 x^{11} + 366 x^{10} + 634 x^{9} + 438 x^{8} + 88 x^{7} + 24 x^{6} + 14 x^{5} - 12 x^{4} + 16 x^{3} + 6 x^{2} - 6 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(671846400000000000000=2^{24}\cdot 3^{8}\cdot 5^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{11} a^{13} - \frac{3}{11} a^{12} + \frac{5}{11} a^{11} + \frac{4}{11} a^{10} + \frac{4}{11} a^{9} + \frac{1}{11} a^{8} + \frac{5}{11} a^{7} + \frac{3}{11} a^{6} + \frac{3}{11} a^{5} + \frac{4}{11} a^{4} + \frac{3}{11} a^{3} + \frac{2}{11} a^{2} + \frac{3}{11} a - \frac{1}{11}$, $\frac{1}{11} a^{14} - \frac{4}{11} a^{12} - \frac{3}{11} a^{11} + \frac{5}{11} a^{10} + \frac{2}{11} a^{9} - \frac{3}{11} a^{8} - \frac{4}{11} a^{7} + \frac{1}{11} a^{6} + \frac{2}{11} a^{5} + \frac{4}{11} a^{4} - \frac{2}{11} a^{2} - \frac{3}{11} a - \frac{3}{11}$, $\frac{1}{5394713734751} a^{15} + \frac{242248861686}{5394713734751} a^{14} + \frac{169827045687}{5394713734751} a^{13} + \frac{51149243492}{5394713734751} a^{12} + \frac{945422843357}{5394713734751} a^{11} + \frac{645618266739}{5394713734751} a^{10} - \frac{1904939312142}{5394713734751} a^{9} - \frac{777815507202}{5394713734751} a^{8} + \frac{2573566081760}{5394713734751} a^{7} - \frac{1537712639964}{5394713734751} a^{6} - \frac{620428129175}{5394713734751} a^{5} - \frac{2241386412532}{5394713734751} a^{4} + \frac{141929321407}{5394713734751} a^{3} - \frac{382285055575}{5394713734751} a^{2} - \frac{67387660690}{283932301829} a + \frac{1834197649917}{5394713734751}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{2817760306252}{5394713734751} a^{15} + \frac{5608078530828}{5394713734751} a^{14} + \frac{15887017750822}{5394713734751} a^{13} + \frac{37051382045166}{5394713734751} a^{12} + \frac{23427298474896}{5394713734751} a^{11} - \frac{208536202242066}{5394713734751} a^{10} - \frac{1033499390657384}{5394713734751} a^{9} - \frac{1875849239841426}{5394713734751} a^{8} - \frac{1575284008320894}{5394713734751} a^{7} - \frac{695567907651292}{5394713734751} a^{6} - \frac{305385126444918}{5394713734751} a^{5} - \frac{141354443457587}{5394713734751} a^{4} - \frac{19875564779350}{5394713734751} a^{3} - \frac{41415050139238}{5394713734751} a^{2} - \frac{1489321964022}{283932301829} a + \frac{8614084387397}{5394713734751} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9684.50346137 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^3.C_4$ (as 16T99):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $C_2\times C_2^3.C_4$ |
| Character table for $C_2\times C_2^3.C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{15}) \), 4.0.18000.1, \(\Q(\zeta_{5})\), \(\Q(\sqrt{3}, \sqrt{5})\), 8.0.20000000.1, 8.0.1620000000.1, 8.0.324000000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||