Normalized defining polynomial
\( x^{16} - 8 x^{14} - 10 x^{13} + 33 x^{12} + 60 x^{11} - 31 x^{10} - 240 x^{9} - 60 x^{8} + 380 x^{7} + 469 x^{6} - 300 x^{5} - 627 x^{4} - 180 x^{3} + 387 x^{2} + 270 x + 81 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(671846400000000000000=2^{24}\cdot 3^{8}\cdot 5^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4}$, $\frac{1}{30} a^{12} + \frac{2}{15} a^{11} - \frac{1}{10} a^{10} - \frac{1}{15} a^{9} + \frac{13}{30} a^{8} + \frac{4}{15} a^{7} + \frac{1}{10} a^{6} + \frac{4}{15} a^{5} - \frac{1}{15} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a - \frac{3}{10}$, $\frac{1}{90} a^{13} + \frac{1}{90} a^{11} - \frac{1}{9} a^{10} - \frac{1}{10} a^{9} + \frac{2}{5} a^{8} + \frac{41}{90} a^{7} + \frac{1}{15} a^{6} + \frac{1}{15} a^{5} + \frac{13}{45} a^{4} + \frac{1}{9} a^{3} - \frac{4}{15} a^{2} + \frac{1}{6} a + \frac{2}{5}$, $\frac{1}{90} a^{14} + \frac{1}{90} a^{12} - \frac{1}{9} a^{11} - \frac{1}{10} a^{10} + \frac{1}{15} a^{9} + \frac{41}{90} a^{8} + \frac{1}{15} a^{7} - \frac{4}{15} a^{6} + \frac{13}{45} a^{5} + \frac{4}{9} a^{4} + \frac{2}{5} a^{3} - \frac{1}{6} a^{2} + \frac{2}{5} a$, $\frac{1}{127311676830} a^{15} + \frac{136702309}{42437225610} a^{14} - \frac{252409036}{63655838415} a^{13} + \frac{1596628901}{127311676830} a^{12} - \frac{3473563651}{21218612805} a^{11} + \frac{1811728697}{42437225610} a^{10} - \frac{9118737839}{63655838415} a^{9} - \frac{5134198847}{14145741870} a^{8} - \frac{4060795211}{42437225610} a^{7} + \frac{18957907396}{63655838415} a^{6} + \frac{27629543888}{63655838415} a^{5} - \frac{631618379}{1414574187} a^{4} - \frac{17603992817}{42437225610} a^{3} + \frac{836400079}{14145741870} a^{2} - \frac{4013465003}{14145741870} a - \frac{2841161}{2357623645}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8277.91651278 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_8:C_2^2$ (as 16T35):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_8:C_2^2$ |
| Character table for $C_8:C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{10}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-6}) \), 4.2.24000.1 x2, 4.0.9000.1 x2, \(\Q(\sqrt{-6}, \sqrt{10})\), 8.2.8640000000.1 x2, 8.2.8640000000.2 x2, 8.0.5184000000.12 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.8.7.4 | $x^{8} + 40$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.4 | $x^{8} + 40$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |