Normalized defining polynomial
\( x^{16} + 16 x^{14} + 102 x^{12} - 40 x^{11} + 268 x^{10} - 260 x^{9} + 545 x^{8} - 560 x^{7} + 632 x^{6} - 980 x^{5} + 872 x^{4} - 480 x^{3} + 584 x^{2} - 660 x + 241 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6710886400000000000000=2^{40}\cdot 5^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{55519699} a^{14} + \frac{11477974}{55519699} a^{13} - \frac{25660000}{55519699} a^{12} - \frac{18666076}{55519699} a^{11} - \frac{21699348}{55519699} a^{10} + \frac{13782898}{55519699} a^{9} - \frac{19729735}{55519699} a^{8} - \frac{23972310}{55519699} a^{7} - \frac{24665691}{55519699} a^{6} - \frac{20139199}{55519699} a^{5} - \frac{2068168}{55519699} a^{4} - \frac{4026812}{55519699} a^{3} + \frac{8012}{197579} a^{2} + \frac{6558618}{55519699} a + \frac{25847762}{55519699}$, $\frac{1}{561333082653179} a^{15} - \frac{202423}{561333082653179} a^{14} - \frac{112202439836100}{561333082653179} a^{13} + \frac{43306401854431}{561333082653179} a^{12} - \frac{5210353959708}{13691050796419} a^{11} + \frac{37444910093483}{561333082653179} a^{10} - \frac{199283342171511}{561333082653179} a^{9} - \frac{58391897145383}{561333082653179} a^{8} + \frac{158184860634977}{561333082653179} a^{7} - \frac{46438841330493}{561333082653179} a^{6} + \frac{32376183386431}{561333082653179} a^{5} + \frac{95646959693234}{561333082653179} a^{4} - \frac{139911776133753}{561333082653179} a^{3} - \frac{160643202237771}{561333082653179} a^{2} + \frac{221757347373085}{561333082653179} a + \frac{170280253327934}{561333082653179}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7114.13535725 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8: C_2$ |
| Character table for $C_8: C_2$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\zeta_{20})^+\), 4.4.8000.1, \(\Q(\zeta_{40})^+\), 8.0.5120000000.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||