Normalized defining polynomial
\( x^{16} - 4 x^{15} + 49 x^{14} - 154 x^{13} + 848 x^{12} - 1754 x^{11} + 6979 x^{10} + 35819 x^{9} + 284435 x^{8} - 556257 x^{7} + 7200689 x^{6} - 31438382 x^{5} - 11440997 x^{4} + 76161103 x^{3} + 106278189 x^{2} - 64246320 x + 31088575 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(670188096064724500217499812793861721=29^{14}\cdot 83^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $173.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{7} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{7} a^{9} - \frac{1}{7} a^{3}$, $\frac{1}{7} a^{10} - \frac{1}{7} a^{4}$, $\frac{1}{7} a^{11} - \frac{1}{7} a^{5}$, $\frac{1}{49} a^{12} + \frac{3}{49} a^{11} + \frac{2}{49} a^{10} - \frac{1}{49} a^{9} - \frac{3}{49} a^{8} - \frac{2}{49} a^{7} + \frac{6}{49} a^{6} - \frac{24}{49} a^{5} - \frac{16}{49} a^{4} + \frac{8}{49} a^{3} + \frac{24}{49} a^{2} + \frac{16}{49} a - \frac{2}{7}$, $\frac{1}{245} a^{13} + \frac{2}{245} a^{12} - \frac{1}{245} a^{11} + \frac{11}{245} a^{10} - \frac{9}{245} a^{9} + \frac{3}{49} a^{8} - \frac{13}{245} a^{7} - \frac{79}{245} a^{6} + \frac{57}{245} a^{5} + \frac{108}{245} a^{4} + \frac{23}{245} a^{3} - \frac{24}{49} a^{2} - \frac{58}{245} a - \frac{1}{7}$, $\frac{1}{121755902708755} a^{14} - \frac{119615023182}{121755902708755} a^{13} + \frac{1119061807081}{121755902708755} a^{12} - \frac{1493886611362}{24351180541751} a^{11} + \frac{13493425973}{239206095695} a^{10} + \frac{3284043991066}{121755902708755} a^{9} - \frac{4577724990648}{121755902708755} a^{8} - \frac{5165636889477}{121755902708755} a^{7} - \frac{60843182233072}{121755902708755} a^{6} + \frac{4720472585841}{24351180541751} a^{5} + \frac{43520087800236}{121755902708755} a^{4} - \frac{51642933771197}{121755902708755} a^{3} - \frac{41037158909078}{121755902708755} a^{2} - \frac{38839989511178}{121755902708755} a - \frac{21073538876}{58961696227}$, $\frac{1}{9163680055032722060121088396009151861408515} a^{15} + \frac{2852438776158780430021692616}{9163680055032722060121088396009151861408515} a^{14} + \frac{13011792920865386984168678672914076233627}{9163680055032722060121088396009151861408515} a^{13} + \frac{2347339283414619313029900866923373595222}{9163680055032722060121088396009151861408515} a^{12} - \frac{26033659101502127451407240373168726145805}{1832736011006544412024217679201830372281703} a^{11} + \frac{459647897383097657265473726555404312538314}{9163680055032722060121088396009151861408515} a^{10} - \frac{107122864075687083757581981985174432651638}{9163680055032722060121088396009151861408515} a^{9} + \frac{12906824552198930657280090120587603019064}{9163680055032722060121088396009151861408515} a^{8} + \frac{16253422198756386967610018898726208024273}{1309097150718960294303012628001307408772645} a^{7} - \frac{980472966818026042363875237327967636638694}{9163680055032722060121088396009151861408515} a^{6} + \frac{31512054622407400024876611743200354703712}{79684174391588887479313812139210016186161} a^{5} + \frac{1075701930694478097454361197629987607398397}{9163680055032722060121088396009151861408515} a^{4} - \frac{3798653094962534665990067894826993467818768}{9163680055032722060121088396009151861408515} a^{3} + \frac{3693972072300446684273783000583063105659338}{9163680055032722060121088396009151861408515} a^{2} + \frac{218160823537157055911432571096107307331816}{1832736011006544412024217679201830372281703} a + \frac{257868446976645375276960325144131454008}{4437617460064272184078008908479008165331}$
Class group and class number
$C_{30}$, which has order $30$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 89005085005.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T36):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | R | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $29$ | 29.8.7.2 | $x^{8} - 116$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 29.8.7.2 | $x^{8} - 116$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $83$ | 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.4.2.1 | $x^{4} + 249 x^{2} + 27556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 83.4.2.1 | $x^{4} + 249 x^{2} + 27556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |