Properties

Label 16.0.66977074687...6976.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{52}\cdot 3^{12}\cdot 23^{4}$
Root discriminant $47.49$
Ramified primes $2, 3, 23$
Class number $80$ (GRH)
Class group $[2, 2, 2, 10]$ (GRH)
Galois group $C_2^4.C_2^3$ (as 16T373)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![625, 0, -600, 0, 622, 0, 408, 0, 396, 0, 228, 0, 82, 0, 12, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 12*x^14 + 82*x^12 + 228*x^10 + 396*x^8 + 408*x^6 + 622*x^4 - 600*x^2 + 625)
 
gp: K = bnfinit(x^16 + 12*x^14 + 82*x^12 + 228*x^10 + 396*x^8 + 408*x^6 + 622*x^4 - 600*x^2 + 625, 1)
 

Normalized defining polynomial

\( x^{16} + 12 x^{14} + 82 x^{12} + 228 x^{10} + 396 x^{8} + 408 x^{6} + 622 x^{4} - 600 x^{2} + 625 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(669770746878591518927486976=2^{52}\cdot 3^{12}\cdot 23^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $47.49$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{5} a^{9} + \frac{2}{5} a^{7} - \frac{1}{5} a^{3} + \frac{1}{5} a$, $\frac{1}{5} a^{10} + \frac{2}{5} a^{8} - \frac{1}{5} a^{4} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{11} + \frac{1}{5} a^{7} - \frac{1}{5} a^{5} - \frac{2}{5} a^{3} - \frac{2}{5} a$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{8} - \frac{1}{5} a^{6} - \frac{2}{5} a^{4} - \frac{2}{5} a^{2}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{7} - \frac{2}{5} a^{5} - \frac{1}{5} a^{3} - \frac{1}{5} a$, $\frac{1}{6003778825} a^{14} + \frac{473740712}{6003778825} a^{12} - \frac{424603253}{6003778825} a^{10} + \frac{2634252608}{6003778825} a^{8} - \frac{2612122829}{6003778825} a^{6} - \frac{2167205357}{6003778825} a^{4} - \frac{884051363}{6003778825} a^{2} - \frac{23163534}{240151153}$, $\frac{1}{30018894125} a^{15} + \frac{473740712}{30018894125} a^{13} - \frac{1625359018}{30018894125} a^{11} + \frac{232741078}{30018894125} a^{9} - \frac{14619680479}{30018894125} a^{7} + \frac{5037329233}{30018894125} a^{5} + \frac{9922750522}{30018894125} a^{3} - \frac{100693168}{240151153} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{10}$, which has order $80$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 114624.69801 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4.C_2^3$ (as 16T373):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 128
The 26 conjugacy class representatives for $C_2^4.C_2^3$
Character table for $C_2^4.C_2^3$ is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{6}) \), 4.0.158976.2, 4.0.39744.5, \(\Q(\sqrt{2}, \sqrt{3})\), 8.8.62511906816.2, 8.0.101093474304.27, 8.0.562607161344.5

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.8.6.2$x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$
3.8.6.2$x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$
$23$23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.1.2$x^{2} + 46$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.1.2$x^{2} + 46$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.1.2$x^{2} + 46$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.1.2$x^{2} + 46$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$