Normalized defining polynomial
\( x^{16} - 6 x^{15} - 4 x^{14} + 91 x^{13} - 52 x^{12} - 846 x^{11} + 1689 x^{10} + 2103 x^{9} - 8872 x^{8} + 1389 x^{7} + 21941 x^{6} - 17167 x^{5} - 27252 x^{4} + 38408 x^{3} + 5334 x^{2} - 30977 x + 14851 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(66787881998297119140625=5^{14}\cdot 149^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{22} a^{13} - \frac{5}{22} a^{12} - \frac{2}{11} a^{11} - \frac{1}{22} a^{10} - \frac{1}{2} a^{9} - \frac{5}{22} a^{8} - \frac{1}{11} a^{7} + \frac{4}{11} a^{6} + \frac{5}{11} a^{5} - \frac{4}{11} a^{4} + \frac{7}{22} a^{3} - \frac{5}{11} a^{2} + \frac{7}{22} a - \frac{2}{11}$, $\frac{1}{44} a^{14} - \frac{1}{44} a^{13} - \frac{1}{22} a^{12} - \frac{3}{22} a^{11} - \frac{1}{11} a^{10} - \frac{4}{11} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{9}{44} a^{6} - \frac{3}{11} a^{5} + \frac{2}{11} a^{4} + \frac{7}{44} a^{3} - \frac{1}{4} a^{2} + \frac{1}{22} a + \frac{17}{44}$, $\frac{1}{14889891036872412555564454676} a^{15} - \frac{35624288612607474347287697}{3722472759218103138891113669} a^{14} - \frac{181519180753317397065411201}{14889891036872412555564454676} a^{13} - \frac{1168931044916208169123156}{8253819865228610064060119} a^{12} - \frac{43829429672042230401731605}{7444945518436206277782227338} a^{11} - \frac{778047098206635753076140390}{3722472759218103138891113669} a^{10} - \frac{5185275922676252883153956967}{14889891036872412555564454676} a^{9} - \frac{3832620569723273081025626085}{14889891036872412555564454676} a^{8} + \frac{82770901292759600235494915}{1353626457897492050505859516} a^{7} + \frac{5254413251272627455792984527}{14889891036872412555564454676} a^{6} + \frac{527882460871306669071238098}{3722472759218103138891113669} a^{5} - \frac{128136031526976850036686237}{1353626457897492050505859516} a^{4} + \frac{1055752391778592087279125675}{3722472759218103138891113669} a^{3} + \frac{1571076608707280345212178033}{14889891036872412555564454676} a^{2} - \frac{5649177397616126707989526895}{14889891036872412555564454676} a + \frac{3507710914919261059628980505}{14889891036872412555564454676}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{2979643316639244454267103}{3722472759218103138891113669} a^{15} - \frac{53293492938184583056478881}{14889891036872412555564454676} a^{14} - \frac{140266633850503972557693473}{14889891036872412555564454676} a^{13} + \frac{1038139660685408901392183}{16507639730457220128120238} a^{12} + \frac{209577142130870256622944521}{3722472759218103138891113669} a^{11} - \frac{4840624120307847535488749691}{7444945518436206277782227338} a^{10} + \frac{1470573661307212391268043842}{3722472759218103138891113669} a^{9} + \frac{41795208952492839579247024377}{14889891036872412555564454676} a^{8} - \frac{1333667752774356104383291154}{338406614474373012626464879} a^{7} - \frac{82832561397149054314439830949}{14889891036872412555564454676} a^{6} + \frac{49043500037228665323436625486}{3722472759218103138891113669} a^{5} + \frac{1647878631292425221904611951}{338406614474373012626464879} a^{4} - \frac{329859041180291264949202847629}{14889891036872412555564454676} a^{3} + \frac{56136958434563993018857151137}{14889891036872412555564454676} a^{2} + \frac{59748529162666123522993548448}{3722472759218103138891113669} a - \frac{148693709149378333665689376371}{14889891036872412555564454676} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 346477.938234 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\wr C_2$ (as 16T28):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.18625.1, \(\Q(\zeta_{5})\), 4.0.3725.1, 8.0.346890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $149$ | 149.4.2.2 | $x^{4} - 149 x^{2} + 66603$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 149.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 149.8.4.1 | $x^{8} + 88804 x^{4} - 3307949 x^{2} + 1971537604$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |