Normalized defining polynomial
\( x^{16} - 3 x^{15} - 6 x^{14} + 67 x^{13} - 92 x^{12} - 388 x^{11} + 1171 x^{10} - 884 x^{9} - 1842 x^{8} + 7987 x^{7} - 10546 x^{6} - 154 x^{5} + 23133 x^{4} - 41026 x^{3} + 35166 x^{2} - 14964 x + 2501 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(66787881998297119140625=5^{14}\cdot 149^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{662} a^{13} + \frac{82}{331} a^{12} - \frac{148}{331} a^{11} + \frac{251}{662} a^{10} - \frac{86}{331} a^{9} + \frac{163}{331} a^{8} - \frac{305}{662} a^{7} + \frac{164}{331} a^{5} - \frac{69}{662} a^{4} - \frac{135}{331} a^{3} + \frac{106}{331} a^{2} + \frac{251}{662} a - \frac{7}{331}$, $\frac{1}{662} a^{14} - \frac{25}{331} a^{12} - \frac{193}{662} a^{11} - \frac{146}{331} a^{10} + \frac{34}{331} a^{9} - \frac{147}{662} a^{8} - \frac{146}{331} a^{7} + \frac{164}{331} a^{6} - \frac{239}{662} a^{5} - \frac{104}{331} a^{4} + \frac{69}{331} a^{3} - \frac{93}{662} a^{2} - \frac{67}{331} a + \frac{155}{331}$, $\frac{1}{60276464031934961515000802} a^{15} + \frac{14384460951051441562091}{30138232015967480757500401} a^{14} + \frac{11832759103330604175359}{30138232015967480757500401} a^{13} + \frac{2944194244503640925827208}{30138232015967480757500401} a^{12} + \frac{478574877380309606961363}{2739839274178861887045491} a^{11} - \frac{14076115277434862692194612}{30138232015967480757500401} a^{10} - \frac{16608593210829020648807}{30138232015967480757500401} a^{9} + \frac{12046789942952034392157859}{30138232015967480757500401} a^{8} + \frac{4039042758407509482508540}{30138232015967480757500401} a^{7} - \frac{4186637559602451745427672}{30138232015967480757500401} a^{6} - \frac{7552869404126682570848008}{30138232015967480757500401} a^{5} + \frac{4595846044765253700148434}{30138232015967480757500401} a^{4} + \frac{13616394533177477164590086}{30138232015967480757500401} a^{3} + \frac{8376596529465301574808784}{30138232015967480757500401} a^{2} - \frac{380403822793688134732707}{2739839274178861887045491} a - \frac{27816628055499288553641537}{60276464031934961515000802}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{31408882359628814141947}{5479678548357723774090982} a^{15} + \frac{77106728506800341032003}{5479678548357723774090982} a^{14} + \frac{228396337659458042625165}{5479678548357723774090982} a^{13} - \frac{1977668046113522540266641}{5479678548357723774090982} a^{12} + \frac{1830453175033177485047935}{5479678548357723774090982} a^{11} + \frac{13080229401241108546994329}{5479678548357723774090982} a^{10} - \frac{29681592701491452973296791}{5479678548357723774090982} a^{9} + \frac{12425438694469638498754345}{5479678548357723774090982} a^{8} + \frac{63921875803621012074836221}{5479678548357723774090982} a^{7} - \frac{216447522530377546415681253}{5479678548357723774090982} a^{6} + \frac{216398702177129694059384821}{5479678548357723774090982} a^{5} + \frac{113721352652663577933418163}{5479678548357723774090982} a^{4} - \frac{663161923407707258883137951}{5479678548357723774090982} a^{3} + \frac{938051238299683552053472989}{5479678548357723774090982} a^{2} - \frac{619460392324464953825859435}{5479678548357723774090982} a + \frac{78615522814862078562897165}{2739839274178861887045491} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 59134.6269298 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_4).D_4$ (as 16T121):
| A solvable group of order 64 |
| The 28 conjugacy class representatives for $(C_2\times C_4).D_4$ |
| Character table for $(C_2\times C_4).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 4.4.18625.1, 4.0.3725.1, 8.0.258433515625.1, 8.8.258433515625.1, 8.0.346890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $149$ | 149.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 149.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 149.8.6.2 | $x^{8} + 745 x^{4} + 199809$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |