Normalized defining polynomial
\( x^{16} + 816 x^{14} + 270504 x^{12} + 46693152 x^{10} + 4468073076 x^{8} + 233097458400 x^{6} + 6070515141456 x^{4} + 63887310947520 x^{2} + 211215000911202 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(667766448639661081824497937039393690193231872=2^{79}\cdot 3^{8}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $633.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3264=2^{6}\cdot 3\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3264}(1,·)$, $\chi_{3264}(2117,·)$, $\chi_{3264}(1993,·)$, $\chi_{3264}(461,·)$, $\chi_{3264}(3025,·)$, $\chi_{3264}(3221,·)$, $\chi_{3264}(217,·)$, $\chi_{3264}(797,·)$, $\chi_{3264}(1633,·)$, $\chi_{3264}(485,·)$, $\chi_{3264}(361,·)$, $\chi_{3264}(2093,·)$, $\chi_{3264}(1393,·)$, $\chi_{3264}(1589,·)$, $\chi_{3264}(1849,·)$, $\chi_{3264}(2429,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{63} a^{4} - \frac{2}{21} a^{2} - \frac{3}{7}$, $\frac{1}{63} a^{5} - \frac{2}{21} a^{3} - \frac{3}{7} a$, $\frac{1}{189} a^{6} + \frac{1}{7}$, $\frac{1}{189} a^{7} + \frac{1}{7} a$, $\frac{1}{2766393} a^{8} + \frac{8}{54243} a^{6} + \frac{53}{18081} a^{4} - \frac{829}{6027} a^{2} - \frac{263}{2009}$, $\frac{1}{2766393} a^{9} + \frac{8}{54243} a^{7} + \frac{53}{18081} a^{5} - \frac{829}{6027} a^{3} - \frac{263}{2009} a$, $\frac{1}{8299179} a^{10} + \frac{113}{54243} a^{6} - \frac{1}{18081} a^{4} - \frac{23}{6027} a^{2} + \frac{754}{2009}$, $\frac{1}{141086043} a^{11} - \frac{44}{54243} a^{7} + \frac{15}{2009} a^{5} - \frac{199}{34153} a^{3} - \frac{766}{2009} a$, $\frac{1}{20739648321} a^{12} + \frac{4}{135553257} a^{10} - \frac{13}{135553257} a^{8} - \frac{88}{42189} a^{6} + \frac{12527}{15061473} a^{4} + \frac{8832}{98441} a^{2} + \frac{5737}{98441}$, $\frac{1}{9104705612919} a^{13} + \frac{151}{59507879823} a^{11} - \frac{2659}{59507879823} a^{9} - \frac{5660}{18520971} a^{7} - \frac{21743767}{6611986647} a^{5} - \frac{16578281}{129646797} a^{3} + \frac{8206279}{43215599} a$, $\frac{1}{464339986258869} a^{14} + \frac{2}{1300672230417} a^{12} - \frac{121}{59507879823} a^{10} - \frac{6697}{59507879823} a^{8} + \frac{593132803}{337211318997} a^{6} + \frac{16297990}{6611986647} a^{4} + \frac{2458160}{43215599} a^{2} - \frac{38616}{98441}$, $\frac{1}{464339986258869} a^{15} - \frac{6430}{3034901870973} a^{11} + \frac{334}{2203995549} a^{9} + \frac{618452671}{337211318997} a^{7} + \frac{7802399}{2203995549} a^{5} + \frac{216806635}{2203995549} a^{3} + \frac{13681585}{43215599} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{190068616}$, which has order $1520548928$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 55546734.0870713 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.591872.2, 8.8.51835034729971712.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $16$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{16}$ | $16$ | $16$ | R | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | $16$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $17$ | 17.8.7.2 | $x^{8} - 153$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.2 | $x^{8} - 153$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |