Normalized defining polynomial
\( x^{16} - 5 x^{15} + 52 x^{14} - 245 x^{13} + 1643 x^{12} - 6870 x^{11} + 30524 x^{10} - 94175 x^{9} + 289810 x^{8} - 654640 x^{7} + 1511429 x^{6} - 2584630 x^{5} + 4545883 x^{4} - 5708255 x^{3} + 6879627 x^{2} - 6443580 x + 3798311 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6675325150661382452392578125=5^{14}\cdot 101^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $54.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{44} a^{14} + \frac{9}{44} a^{13} + \frac{13}{44} a^{12} - \frac{2}{11} a^{11} + \frac{1}{22} a^{10} - \frac{1}{2} a^{9} + \frac{5}{22} a^{8} + \frac{15}{44} a^{7} - \frac{3}{22} a^{6} - \frac{15}{44} a^{5} + \frac{17}{44} a^{4} + \frac{3}{44} a^{3} - \frac{3}{11} a^{2} - \frac{3}{22} a + \frac{1}{4}$, $\frac{1}{7857659068852756339934433020350436958824792} a^{15} + \frac{21335841556685785874167894729304958890893}{1964414767213189084983608255087609239706198} a^{14} - \frac{442375533444756371847301263845408231980011}{1964414767213189084983608255087609239706198} a^{13} - \frac{3102765895136493148904722303399566162043893}{7857659068852756339934433020350436958824792} a^{12} + \frac{1647538511471845878313735834698818435155185}{3928829534426378169967216510175218479412396} a^{11} - \frac{931586793253967626747019172435159644923595}{1964414767213189084983608255087609239706198} a^{10} + \frac{209917121390085028880172544943829817488223}{982207383606594542491804127543804619853099} a^{9} - \frac{515869623425148390462064729083763726320679}{7857659068852756339934433020350436958824792} a^{8} - \frac{2762245717036468939421771408756462337321901}{7857659068852756339934433020350436958824792} a^{7} + \frac{2617105691013084694892106746461995927010255}{7857659068852756339934433020350436958824792} a^{6} + \frac{650167150995324377582637720574266213891001}{1964414767213189084983608255087609239706198} a^{5} - \frac{326481617394331034895533201756223310526167}{3928829534426378169967216510175218479412396} a^{4} - \frac{644472088963480727579808999702275014323399}{7857659068852756339934433020350436958824792} a^{3} + \frac{1203265258608817014766299817614071762557555}{3928829534426378169967216510175218479412396} a^{2} - \frac{17671561090039294204350448063615712881711}{7857659068852756339934433020350436958824792} a - \frac{93220670229322738299848730561120146773721}{714332642622977849084948456395494268984072}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{458902357013625387647328219549983}{3314069619929462817348980607486476996552} a^{15} + \frac{1613054440649039590903397491244927}{1657034809964731408674490303743238498276} a^{14} - \frac{5839438776333704618470711109329315}{1657034809964731408674490303743238498276} a^{13} + \frac{157274828773734436433505531896352933}{3314069619929462817348980607486476996552} a^{12} - \frac{297980541821971959101270260768942893}{1657034809964731408674490303743238498276} a^{11} + \frac{1063188329924130572772580398596402173}{828517404982365704337245151871619249138} a^{10} - \frac{1599632085073743276208421533910472169}{414258702491182852168622575935809624569} a^{9} + \frac{70948286852474016285929933183700630969}{3314069619929462817348980607486476996552} a^{8} - \frac{219401234587595052468662155354408219547}{3314069619929462817348980607486476996552} a^{7} + \frac{892436864567510212080819435158187343339}{3314069619929462817348980607486476996552} a^{6} - \frac{1007634019602029282351995086120841100329}{1657034809964731408674490303743238498276} a^{5} + \frac{642795331215528773866457056505932265074}{414258702491182852168622575935809624569} a^{4} - \frac{7412133778505047638869727320446853343129}{3314069619929462817348980607486476996552} a^{3} + \frac{6702951035430644197487828849114546765581}{1657034809964731408674490303743238498276} a^{2} - \frac{13658548887851871818472487183687594553055}{3314069619929462817348980607486476996552} a + \frac{942319620953113829562910216016647064757}{301279056357223892486270964316952454232} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8261721.23087 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1281 |
| Character table for t16n1281 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.159390625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $101$ | 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 101.4.2.2 | $x^{4} - 101 x^{2} + 30603$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 101.4.3.3 | $x^{4} + 202$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |