Normalized defining polynomial
\( x^{16} - 3 x^{15} + 26 x^{14} - 129 x^{13} + 302 x^{12} - 1025 x^{11} + 4282 x^{10} + 16326 x^{9} + 95981 x^{8} + 338337 x^{7} + 1003331 x^{6} + 2604733 x^{5} + 6573615 x^{4} + 13657839 x^{3} + 25464387 x^{2} + 29036657 x + 45417983 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(66688975910627504451630153142433=13^{12}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $97.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{13} a^{12} + \frac{6}{13} a^{11} - \frac{4}{13} a^{10} + \frac{3}{13} a^{9} + \frac{3}{13} a^{8} - \frac{5}{13} a^{7} - \frac{1}{13} a^{6} + \frac{4}{13} a^{5} - \frac{4}{13} a^{4}$, $\frac{1}{13} a^{13} - \frac{1}{13} a^{11} + \frac{1}{13} a^{10} - \frac{2}{13} a^{9} + \frac{3}{13} a^{8} + \frac{3}{13} a^{7} - \frac{3}{13} a^{6} - \frac{2}{13} a^{5} - \frac{2}{13} a^{4}$, $\frac{1}{13} a^{14} - \frac{6}{13} a^{11} - \frac{6}{13} a^{10} + \frac{6}{13} a^{9} + \frac{6}{13} a^{8} + \frac{5}{13} a^{7} - \frac{3}{13} a^{6} + \frac{2}{13} a^{5} - \frac{4}{13} a^{4}$, $\frac{1}{6390145980772722025343275212010336388135095353991913} a^{15} - \frac{56479902511564403777606531558310708271504673280143}{6390145980772722025343275212010336388135095353991913} a^{14} + \frac{179413787225065635050735023749175329720378102133639}{6390145980772722025343275212010336388135095353991913} a^{13} - \frac{49759378359578254339367385246314419390661822985721}{6390145980772722025343275212010336388135095353991913} a^{12} + \frac{2459276856342958744393999524535693014240294518326939}{6390145980772722025343275212010336388135095353991913} a^{11} - \frac{1503510415522994842904008218446201989160176480206942}{6390145980772722025343275212010336388135095353991913} a^{10} + \frac{3080040473029832734799400045663208198827898074991340}{6390145980772722025343275212010336388135095353991913} a^{9} + \frac{416287503837916329705495462025592766137662452590730}{6390145980772722025343275212010336388135095353991913} a^{8} + \frac{108185744556916953538992090863645637187861012016962}{6390145980772722025343275212010336388135095353991913} a^{7} - \frac{2526121402358469064168913861724917683948060037476648}{6390145980772722025343275212010336388135095353991913} a^{6} - \frac{3706465445833796417318634383198777141646288769022}{42886885776998134398277014845706955625067754053637} a^{5} - \frac{42674384931036570437057554480758632389199923440557}{491549690828670925026405785539256645241161181076301} a^{4} + \frac{15293801759874770867388919338703383912410718362742}{491549690828670925026405785539256645241161181076301} a^{3} + \frac{12929082218154644752952313163307793829890897798319}{491549690828670925026405785539256645241161181076301} a^{2} + \frac{180633217363136685515038433073984310144720440701581}{491549690828670925026405785539256645241161181076301} a + \frac{875988098350203749498989479873597516482690243767}{4866828622066048762637681044943135101397635456201}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{388}$, which has order $3104$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 464752.47625 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.8.11719682839553.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | R | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.3.3 | $x^{4} + 26$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.4 | $x^{4} + 104$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.3 | $x^{4} + 26$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.4 | $x^{4} + 104$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17 | Data not computed | ||||||