/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^16 - 18*x^14 + 192*x^12 - 252*x^11 - 135*x^10 + 987*x^9 - 2123*x^8 - 4788*x^7 + 15615*x^6 + 14679*x^5 - 24042*x^4 - 11592*x^3 + 25749*x^2 - 11193*x + 1681, 16, 42, [0, 8], 66556997328875790787650649, [7, 37], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, 1/3*a^8 - 1/3, 1/3*a^9 - 1/3*a, 1/18*a^10 - 1/18*a^9 - 1/18*a^8 - 1/6*a^6 + 1/6*a^5 - 1/3*a^4 - 1/3*a^3 - 7/18*a^2 - 4/9*a - 5/18, 1/18*a^11 - 1/9*a^9 - 1/18*a^8 - 1/6*a^7 - 1/6*a^5 + 1/3*a^4 + 5/18*a^3 + 1/6*a^2 + 5/18*a - 5/18, 1/36*a^12 - 1/36*a^10 - 1/18*a^9 - 1/9*a^8 + 1/3*a^6 + 1/4*a^5 + 17/36*a^4 - 1/12*a^3 - 1/18*a^2 - 13/36*a - 5/36, 1/36*a^13 - 1/36*a^11 - 1/6*a^9 - 1/18*a^8 + 1/3*a^7 + 1/12*a^6 - 13/36*a^5 - 5/12*a^4 - 7/18*a^3 + 1/4*a^2 + 5/12*a - 5/18, 1/576*a^14 + 5/576*a^13 + 1/144*a^12 + 5/576*a^11 + 13/576*a^10 - 37/288*a^9 + 1/18*a^8 - 13/192*a^7 - 23/288*a^6 - 101/576*a^5 + 17/36*a^4 - 85/288*a^3 + 5/144*a^2 + 13/288*a + 283/576, 1/7059927930235177125048768*a^15 + 4243685378887469479/14349447012673124237904*a^14 - 61232549279835529511089/7059927930235177125048768*a^13 + 147319316686583623145/172193364152077490854848*a^12 - 17833424129836079557621/882490991279397140631096*a^11 + 183308316841383114995753/7059927930235177125048768*a^10 - 117293685578057190199913/1176654655039196187508128*a^9 - 1023437328291901923248743/7059927930235177125048768*a^8 + 1145110130408084990518505/7059927930235177125048768*a^7 + 1119187391770473077567971/2353309310078392375016256*a^6 + 1889169936196903584215125/7059927930235177125048768*a^5 - 10996968066774057136997/3529963965117588562524384*a^4 - 1306180478524569291931817/3529963965117588562524384*a^3 - 69700618332415837965709/3529963965117588562524384*a^2 - 1061892321412419523489925/2353309310078392375016256*a - 44117279464031469054979/172193364152077490854848], 0, 1, [], 1, [ (82009783176396725)/(1120267840405454954784)*a^(15) + (7571823603713213)/(13661802931773840912)*a^(14) - (82524742577964239)/(124474204489494994976)*a^(13) - (256426785919854043)/(27323605863547681824)*a^(12) + (1653340837507110139)/(560133920202727477392)*a^(11) + (86992754312589987803)/(1120267840405454954784)*a^(10) - (2219579506122695405)/(62237102244747497488)*a^(9) - (68432285107233652691)/(1120267840405454954784)*a^(8) + (301661157221702403571)/(1120267840405454954784)*a^(7) - (1205446823957973421367)/(1120267840405454954784)*a^(6) - (882893293161590877671)/(373422613468484984928)*a^(5) + (3300232911632723520895)/(560133920202727477392)*a^(4) + (7007427425319090409757)/(560133920202727477392)*a^(3) + (706475758439639922971)/(560133920202727477392)*a^(2) - (2325747093713116697861)/(373422613468484984928)*a + (47516809835481384451)/(27323605863547681824) , (476834825548999333697)/(882490991279397140631096)*a^(15) + (9227769055035937217)/(10762085259504843178428)*a^(14) - (882693926082795820711)/(98054554586599682292344)*a^(13) - (313611433377247830833)/(21524170519009686356856)*a^(12) + (40285669175350273860737)/(441245495639698570315548)*a^(11) + (4168615533257021134871)/(294163663759799046877032)*a^(10) - (70434142098673776676381)/(441245495639698570315548)*a^(9) + (333918471564858622457837)/(882490991279397140631096)*a^(8) - (467794738147092302534561)/(882490991279397140631096)*a^(7) - (3318780332811715690230203)/(882490991279397140631096)*a^(6) + (1015033666903446900399463)/(294163663759799046877032)*a^(5) + (1824463218953872603005926)/(110311373909924642578887)*a^(4) + (719248542404974925309911)/(110311373909924642578887)*a^(3) - (384018570381388207045479)/(49027277293299841146172)*a^(2) - (57471548666139973367005)/(882490991279397140631096)*a + (14119243068486841206005)/(21524170519009686356856) , (11513229250433545)/(29449251373346808624)*a^(15) - (179524842118333)/(1436548847480332128)*a^(14) - (401731873104361667)/(58898502746693617248)*a^(13) + (1493346108573779)/(718274423740166064)*a^(12) + (4202797280326899551)/(58898502746693617248)*a^(11) - (6933701559738150895)/(58898502746693617248)*a^(10) + (66822699935189043)/(3272139041482978736)*a^(9) + (8863473644744432825)/(29449251373346808624)*a^(8) - (55081297480886658947)/(58898502746693617248)*a^(7) - (9612741747102203621)/(7362312843336702156)*a^(6) + (342423119887589247155)/(58898502746693617248)*a^(5) + (57526403903905893577)/(14724625686673404312)*a^(4) - (199325948919560091493)/(29449251373346808624)*a^(3) - (7237378053064256989)/(7362312843336702156)*a^(2) + (3046516593816534891)/(818034760370744684)*a - (1503571521182846405)/(1436548847480332128) , (432501185118498078391)/(588327327519598093754064)*a^(15) + (17270925249136357915)/(21524170519009686356856)*a^(14) - (7628959114682495605681)/(588327327519598093754064)*a^(13) - (222740541907113373601)/(14349447012673124237904)*a^(12) + (122249646895588098007741)/(882490991279397140631096)*a^(11) - (28838828158666480948273)/(1764981982558794281262192)*a^(10) - (249710535303351404017177)/(882490991279397140631096)*a^(9) + (245026441723705707295615)/(588327327519598093754064)*a^(8) - (132771747314202341324795)/(588327327519598093754064)*a^(7) - (10725019609706916897275431)/(1764981982558794281262192)*a^(6) + (1556793163682691447899463)/(196109109173199364584688)*a^(5) + (2336130237077900313211439)/(98054554586599682292344)*a^(4) - (2029102458767451629752507)/(882490991279397140631096)*a^(3) - (33854608336311089991688009)/(882490991279397140631096)*a^(2) + (39247032457720897028444537)/(1764981982558794281262192)*a - (57559286419933533911003)/(14349447012673124237904) , (186549656109949628401)/(3529963965117588562524384)*a^(15) - (7597649607714167611)/(28698894025346248475808)*a^(14) - (1381432997426928448949)/(1764981982558794281262192)*a^(13) + (122932310852452591823)/(28698894025346248475808)*a^(12) + (25897434161403264842015)/(3529963965117588562524384)*a^(11) - (23672105761755073109125)/(441245495639698570315548)*a^(10) + (81364766307797665216247)/(882490991279397140631096)*a^(9) - (183472140896476842754871)/(3529963965117588562524384)*a^(8) - (220054577299113552882139)/(882490991279397140631096)*a^(7) + (206356924145487470194511)/(392218218346398729169376)*a^(6) + (1629060127808065399077059)/(1764981982558794281262192)*a^(5) - (307052590343356980620741)/(196109109173199364584688)*a^(4) - (673443752952726021574111)/(441245495639698570315548)*a^(3) + (6050952937550769402915229)/(1764981982558794281262192)*a^(2) - (6803657337855240385796081)/(3529963965117588562524384)*a + (16749767440211040716687)/(43048341038019372713712) , (309685257272218780153)/(3529963965117588562524384)*a^(15) - (1514605820857199675)/(43048341038019372713712)*a^(14) - (6987285833202811840763)/(3529963965117588562524384)*a^(13) - (8630337949362156455)/(86096682076038745427424)*a^(12) + (13918761297098517665233)/(588327327519598093754064)*a^(11) - (5212058191735728706697)/(392218218346398729169376)*a^(10) - (102775614052117346034529)/(1764981982558794281262192)*a^(9) + (218736510127888290933937)/(3529963965117588562524384)*a^(8) - (487869510088283338343305)/(3529963965117588562524384)*a^(7) - (1841165714980325474987203)/(3529963965117588562524384)*a^(6) + (6866311321441170242657183)/(3529963965117588562524384)*a^(5) + (5714699069917087459134491)/(1764981982558794281262192)*a^(4) - (393811260830521405634711)/(196109109173199364584688)*a^(3) - (754765330300565881999929)/(196109109173199364584688)*a^(2) + (11403552289137196074092501)/(3529963965117588562524384)*a - (36094540875143721357305)/(86096682076038745427424) , (13537343970805105944497)/(2353309310078392375016256)*a^(15) - (118481740559287290685)/(172193364152077490854848)*a^(14) - (83269118572977746821979)/(882490991279397140631096)*a^(13) + (586563037648944950039)/(172193364152077490854848)*a^(12) + (6697104444582372325054643)/(7059927930235177125048768)*a^(11) - (5048261006553807109419593)/(3529963965117588562524384)*a^(10) + (289177949086791984465715)/(294163663759799046877032)*a^(9) + (13589554060842033062556379)/(7059927930235177125048768)*a^(8) - (3914259434143778192875071)/(392218218346398729169376)*a^(7) - (142663757494922493209558647)/(7059927930235177125048768)*a^(6) + (116154035770123071696854197)/(1764981982558794281262192)*a^(5) + (219443952531161225303716681)/(3529963965117588562524384)*a^(4) - (7326859646945805048092807)/(1764981982558794281262192)*a^(3) - (204393981273511583554240921)/(3529963965117588562524384)*a^(2) - (12161716349332095995683359)/(784436436692797458338752)*a + (1344329711591117444520013)/(43048341038019372713712) ], 9547939.47561, [[x^2 - x + 2, 1], [x^2 - x - 9, 1], [x^2 - x + 65, 1], [x^4 - 2*x^3 + x + 2, 2], [x^4 - 3*x^2 - 7, 2], [x^4 - 15*x^2 + 121, 1], [x^8 + x^6 - 63*x^5 + 325*x^4 + 2688*x^3 - 6842*x^2 - 16737*x + 39951, 1], [x^8 - 6*x^6 - 14*x^5 + 10*x^4 + 49*x^3 + 11*x^2 + 21*x + 72, 1], [x^8 - 2*x^7 - 2*x^6 + 14*x^5 + 20*x^4 - 110*x^3 + 149*x^2 - 198*x + 324, 1]]]