Normalized defining polynomial
\( x^{16} - 18 x^{14} + 192 x^{12} - 252 x^{11} - 135 x^{10} + 987 x^{9} - 2123 x^{8} - 4788 x^{7} + 15615 x^{6} + 14679 x^{5} - 24042 x^{4} - 11592 x^{3} + 25749 x^{2} - 11193 x + 1681 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(66556997328875790787650649=7^{12}\cdot 37^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{18} a^{10} - \frac{1}{18} a^{9} - \frac{1}{18} a^{8} - \frac{1}{6} a^{6} + \frac{1}{6} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{7}{18} a^{2} - \frac{4}{9} a - \frac{5}{18}$, $\frac{1}{18} a^{11} - \frac{1}{9} a^{9} - \frac{1}{18} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{5} + \frac{1}{3} a^{4} + \frac{5}{18} a^{3} + \frac{1}{6} a^{2} + \frac{5}{18} a - \frac{5}{18}$, $\frac{1}{36} a^{12} - \frac{1}{36} a^{10} - \frac{1}{18} a^{9} - \frac{1}{9} a^{8} + \frac{1}{3} a^{6} + \frac{1}{4} a^{5} + \frac{17}{36} a^{4} - \frac{1}{12} a^{3} - \frac{1}{18} a^{2} - \frac{13}{36} a - \frac{5}{36}$, $\frac{1}{36} a^{13} - \frac{1}{36} a^{11} - \frac{1}{6} a^{9} - \frac{1}{18} a^{8} + \frac{1}{3} a^{7} + \frac{1}{12} a^{6} - \frac{13}{36} a^{5} - \frac{5}{12} a^{4} - \frac{7}{18} a^{3} + \frac{1}{4} a^{2} + \frac{5}{12} a - \frac{5}{18}$, $\frac{1}{576} a^{14} + \frac{5}{576} a^{13} + \frac{1}{144} a^{12} + \frac{5}{576} a^{11} + \frac{13}{576} a^{10} - \frac{37}{288} a^{9} + \frac{1}{18} a^{8} - \frac{13}{192} a^{7} - \frac{23}{288} a^{6} - \frac{101}{576} a^{5} + \frac{17}{36} a^{4} - \frac{85}{288} a^{3} + \frac{5}{144} a^{2} + \frac{13}{288} a + \frac{283}{576}$, $\frac{1}{7059927930235177125048768} a^{15} + \frac{4243685378887469479}{14349447012673124237904} a^{14} - \frac{61232549279835529511089}{7059927930235177125048768} a^{13} + \frac{147319316686583623145}{172193364152077490854848} a^{12} - \frac{17833424129836079557621}{882490991279397140631096} a^{11} + \frac{183308316841383114995753}{7059927930235177125048768} a^{10} - \frac{117293685578057190199913}{1176654655039196187508128} a^{9} - \frac{1023437328291901923248743}{7059927930235177125048768} a^{8} + \frac{1145110130408084990518505}{7059927930235177125048768} a^{7} + \frac{1119187391770473077567971}{2353309310078392375016256} a^{6} + \frac{1889169936196903584215125}{7059927930235177125048768} a^{5} - \frac{10996968066774057136997}{3529963965117588562524384} a^{4} - \frac{1306180478524569291931817}{3529963965117588562524384} a^{3} - \frac{69700618332415837965709}{3529963965117588562524384} a^{2} - \frac{1061892321412419523489925}{2353309310078392375016256} a - \frac{44117279464031469054979}{172193364152077490854848}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9547939.47561 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\wr C_2$ (as 16T42):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{37}) \), \(\Q(\sqrt{-259}) \), 4.0.1813.1 x2, 4.2.9583.1 x2, \(\Q(\sqrt{-7}, \sqrt{37})\), 8.0.8158247197093.1, 8.0.5959274797.1, 8.0.4499860561.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.8.6.1 | $x^{8} + 35 x^{4} + 441$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 7.8.6.1 | $x^{8} + 35 x^{4} + 441$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $37$ | 37.8.6.2 | $x^{8} + 333 x^{4} + 34225$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 37.8.4.1 | $x^{8} + 5476 x^{4} - 50653 x^{2} + 7496644$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |