Properties

Label 16.0.665...649.1
Degree $16$
Signature $[0, 8]$
Discriminant $6.656\times 10^{25}$
Root discriminant \(41.11\)
Ramified primes $7,37$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_4\wr C_2$ (as 16T42)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^16 - 18*x^14 + 192*x^12 - 252*x^11 - 135*x^10 + 987*x^9 - 2123*x^8 - 4788*x^7 + 15615*x^6 + 14679*x^5 - 24042*x^4 - 11592*x^3 + 25749*x^2 - 11193*x + 1681)
 
Copy content gp:K = bnfinit(y^16 - 18*y^14 + 192*y^12 - 252*y^11 - 135*y^10 + 987*y^9 - 2123*y^8 - 4788*y^7 + 15615*y^6 + 14679*y^5 - 24042*y^4 - 11592*y^3 + 25749*y^2 - 11193*y + 1681, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 18*x^14 + 192*x^12 - 252*x^11 - 135*x^10 + 987*x^9 - 2123*x^8 - 4788*x^7 + 15615*x^6 + 14679*x^5 - 24042*x^4 - 11592*x^3 + 25749*x^2 - 11193*x + 1681);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 - 18*x^14 + 192*x^12 - 252*x^11 - 135*x^10 + 987*x^9 - 2123*x^8 - 4788*x^7 + 15615*x^6 + 14679*x^5 - 24042*x^4 - 11592*x^3 + 25749*x^2 - 11193*x + 1681)
 

\( x^{16} - 18 x^{14} + 192 x^{12} - 252 x^{11} - 135 x^{10} + 987 x^{9} - 2123 x^{8} - 4788 x^{7} + \cdots + 1681 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $16$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[0, 8]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(66556997328875790787650649\) \(\medspace = 7^{12}\cdot 37^{10}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(41.11\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $7^{3/4}37^{3/4}\approx 64.56168002238364$
Ramified primes:   \(7\), \(37\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$:   $C_2\times C_4$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
Maximal CM subfield:  \(\Q(\sqrt{-7}, \sqrt{37})\)

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3}a^{8}-\frac{1}{3}$, $\frac{1}{3}a^{9}-\frac{1}{3}a$, $\frac{1}{18}a^{10}-\frac{1}{18}a^{9}-\frac{1}{18}a^{8}-\frac{1}{6}a^{6}+\frac{1}{6}a^{5}-\frac{1}{3}a^{4}-\frac{1}{3}a^{3}-\frac{7}{18}a^{2}-\frac{4}{9}a-\frac{5}{18}$, $\frac{1}{18}a^{11}-\frac{1}{9}a^{9}-\frac{1}{18}a^{8}-\frac{1}{6}a^{7}-\frac{1}{6}a^{5}+\frac{1}{3}a^{4}+\frac{5}{18}a^{3}+\frac{1}{6}a^{2}+\frac{5}{18}a-\frac{5}{18}$, $\frac{1}{36}a^{12}-\frac{1}{36}a^{10}-\frac{1}{18}a^{9}-\frac{1}{9}a^{8}+\frac{1}{3}a^{6}+\frac{1}{4}a^{5}+\frac{17}{36}a^{4}-\frac{1}{12}a^{3}-\frac{1}{18}a^{2}-\frac{13}{36}a-\frac{5}{36}$, $\frac{1}{36}a^{13}-\frac{1}{36}a^{11}-\frac{1}{6}a^{9}-\frac{1}{18}a^{8}+\frac{1}{3}a^{7}+\frac{1}{12}a^{6}-\frac{13}{36}a^{5}-\frac{5}{12}a^{4}-\frac{7}{18}a^{3}+\frac{1}{4}a^{2}+\frac{5}{12}a-\frac{5}{18}$, $\frac{1}{576}a^{14}+\frac{5}{576}a^{13}+\frac{1}{144}a^{12}+\frac{5}{576}a^{11}+\frac{13}{576}a^{10}-\frac{37}{288}a^{9}+\frac{1}{18}a^{8}-\frac{13}{192}a^{7}-\frac{23}{288}a^{6}-\frac{101}{576}a^{5}+\frac{17}{36}a^{4}-\frac{85}{288}a^{3}+\frac{5}{144}a^{2}+\frac{13}{288}a+\frac{283}{576}$, $\frac{1}{70\cdots 68}a^{15}+\frac{42\cdots 79}{14\cdots 04}a^{14}-\frac{61\cdots 89}{70\cdots 68}a^{13}+\frac{14\cdots 45}{17\cdots 48}a^{12}-\frac{17\cdots 21}{88\cdots 96}a^{11}+\frac{18\cdots 53}{70\cdots 68}a^{10}-\frac{11\cdots 13}{11\cdots 28}a^{9}-\frac{10\cdots 43}{70\cdots 68}a^{8}+\frac{11\cdots 05}{70\cdots 68}a^{7}+\frac{11\cdots 71}{23\cdots 56}a^{6}+\frac{18\cdots 25}{70\cdots 68}a^{5}-\frac{10\cdots 97}{35\cdots 84}a^{4}-\frac{13\cdots 17}{35\cdots 84}a^{3}-\frac{69\cdots 09}{35\cdots 84}a^{2}-\frac{10\cdots 25}{23\cdots 56}a-\frac{44\cdots 79}{17\cdots 48}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$, $3$

Class group and class number

Ideal class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $7$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{82\cdots 25}{11\cdots 84}a^{15}+\frac{75\cdots 13}{13\cdots 12}a^{14}-\frac{82\cdots 39}{12\cdots 76}a^{13}-\frac{25\cdots 43}{27\cdots 24}a^{12}+\frac{16\cdots 39}{56\cdots 92}a^{11}+\frac{86\cdots 03}{11\cdots 84}a^{10}-\frac{22\cdots 05}{62\cdots 88}a^{9}-\frac{68\cdots 91}{11\cdots 84}a^{8}+\frac{30\cdots 71}{11\cdots 84}a^{7}-\frac{12\cdots 67}{11\cdots 84}a^{6}-\frac{88\cdots 71}{37\cdots 28}a^{5}+\frac{33\cdots 95}{56\cdots 92}a^{4}+\frac{70\cdots 57}{56\cdots 92}a^{3}+\frac{70\cdots 71}{56\cdots 92}a^{2}-\frac{23\cdots 61}{37\cdots 28}a+\frac{47\cdots 51}{27\cdots 24}$, $\frac{47\cdots 97}{88\cdots 96}a^{15}+\frac{92\cdots 17}{10\cdots 28}a^{14}-\frac{88\cdots 11}{98\cdots 44}a^{13}-\frac{31\cdots 33}{21\cdots 56}a^{12}+\frac{40\cdots 37}{44\cdots 48}a^{11}+\frac{41\cdots 71}{29\cdots 32}a^{10}-\frac{70\cdots 81}{44\cdots 48}a^{9}+\frac{33\cdots 37}{88\cdots 96}a^{8}-\frac{46\cdots 61}{88\cdots 96}a^{7}-\frac{33\cdots 03}{88\cdots 96}a^{6}+\frac{10\cdots 63}{29\cdots 32}a^{5}+\frac{18\cdots 26}{11\cdots 87}a^{4}+\frac{71\cdots 11}{11\cdots 87}a^{3}-\frac{38\cdots 79}{49\cdots 72}a^{2}-\frac{57\cdots 05}{88\cdots 96}a+\frac{14\cdots 05}{21\cdots 56}$, $\frac{11\cdots 45}{29\cdots 24}a^{15}-\frac{179524842118333}{14\cdots 28}a^{14}-\frac{40\cdots 67}{58\cdots 48}a^{13}+\frac{14\cdots 79}{71\cdots 64}a^{12}+\frac{42\cdots 51}{58\cdots 48}a^{11}-\frac{69\cdots 95}{58\cdots 48}a^{10}+\frac{66\cdots 43}{32\cdots 36}a^{9}+\frac{88\cdots 25}{29\cdots 24}a^{8}-\frac{55\cdots 47}{58\cdots 48}a^{7}-\frac{96\cdots 21}{73\cdots 56}a^{6}+\frac{34\cdots 55}{58\cdots 48}a^{5}+\frac{57\cdots 77}{14\cdots 12}a^{4}-\frac{19\cdots 93}{29\cdots 24}a^{3}-\frac{72\cdots 89}{73\cdots 56}a^{2}+\frac{30\cdots 91}{81\cdots 84}a-\frac{15\cdots 05}{14\cdots 28}$, $\frac{43\cdots 91}{58\cdots 64}a^{15}+\frac{17\cdots 15}{21\cdots 56}a^{14}-\frac{76\cdots 81}{58\cdots 64}a^{13}-\frac{22\cdots 01}{14\cdots 04}a^{12}+\frac{12\cdots 41}{88\cdots 96}a^{11}-\frac{28\cdots 73}{17\cdots 92}a^{10}-\frac{24\cdots 77}{88\cdots 96}a^{9}+\frac{24\cdots 15}{58\cdots 64}a^{8}-\frac{13\cdots 95}{58\cdots 64}a^{7}-\frac{10\cdots 31}{17\cdots 92}a^{6}+\frac{15\cdots 63}{19\cdots 88}a^{5}+\frac{23\cdots 39}{98\cdots 44}a^{4}-\frac{20\cdots 07}{88\cdots 96}a^{3}-\frac{33\cdots 09}{88\cdots 96}a^{2}+\frac{39\cdots 37}{17\cdots 92}a-\frac{57\cdots 03}{14\cdots 04}$, $\frac{18\cdots 01}{35\cdots 84}a^{15}-\frac{75\cdots 11}{28\cdots 08}a^{14}-\frac{13\cdots 49}{17\cdots 92}a^{13}+\frac{12\cdots 23}{28\cdots 08}a^{12}+\frac{25\cdots 15}{35\cdots 84}a^{11}-\frac{23\cdots 25}{44\cdots 48}a^{10}+\frac{81\cdots 47}{88\cdots 96}a^{9}-\frac{18\cdots 71}{35\cdots 84}a^{8}-\frac{22\cdots 39}{88\cdots 96}a^{7}+\frac{20\cdots 11}{39\cdots 76}a^{6}+\frac{16\cdots 59}{17\cdots 92}a^{5}-\frac{30\cdots 41}{19\cdots 88}a^{4}-\frac{67\cdots 11}{44\cdots 48}a^{3}+\frac{60\cdots 29}{17\cdots 92}a^{2}-\frac{68\cdots 81}{35\cdots 84}a+\frac{16\cdots 87}{43\cdots 12}$, $\frac{30\cdots 53}{35\cdots 84}a^{15}-\frac{15\cdots 75}{43\cdots 12}a^{14}-\frac{69\cdots 63}{35\cdots 84}a^{13}-\frac{86\cdots 55}{86\cdots 24}a^{12}+\frac{13\cdots 33}{58\cdots 64}a^{11}-\frac{52\cdots 97}{39\cdots 76}a^{10}-\frac{10\cdots 29}{17\cdots 92}a^{9}+\frac{21\cdots 37}{35\cdots 84}a^{8}-\frac{48\cdots 05}{35\cdots 84}a^{7}-\frac{18\cdots 03}{35\cdots 84}a^{6}+\frac{68\cdots 83}{35\cdots 84}a^{5}+\frac{57\cdots 91}{17\cdots 92}a^{4}-\frac{39\cdots 11}{19\cdots 88}a^{3}-\frac{75\cdots 29}{19\cdots 88}a^{2}+\frac{11\cdots 01}{35\cdots 84}a-\frac{36\cdots 05}{86\cdots 24}$, $\frac{13\cdots 97}{23\cdots 56}a^{15}-\frac{11\cdots 85}{17\cdots 48}a^{14}-\frac{83\cdots 79}{88\cdots 96}a^{13}+\frac{58\cdots 39}{17\cdots 48}a^{12}+\frac{66\cdots 43}{70\cdots 68}a^{11}-\frac{50\cdots 93}{35\cdots 84}a^{10}+\frac{28\cdots 15}{29\cdots 32}a^{9}+\frac{13\cdots 79}{70\cdots 68}a^{8}-\frac{39\cdots 71}{39\cdots 76}a^{7}-\frac{14\cdots 47}{70\cdots 68}a^{6}+\frac{11\cdots 97}{17\cdots 92}a^{5}+\frac{21\cdots 81}{35\cdots 84}a^{4}-\frac{73\cdots 07}{17\cdots 92}a^{3}-\frac{20\cdots 21}{35\cdots 84}a^{2}-\frac{12\cdots 59}{78\cdots 52}a+\frac{13\cdots 13}{43\cdots 12}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 9547939.47561 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 9547939.47561 \cdot 1}{2\cdot\sqrt{66556997328875790787650649}}\cr\approx \mathstrut & 1.42141779492 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^16 - 18*x^14 + 192*x^12 - 252*x^11 - 135*x^10 + 987*x^9 - 2123*x^8 - 4788*x^7 + 15615*x^6 + 14679*x^5 - 24042*x^4 - 11592*x^3 + 25749*x^2 - 11193*x + 1681) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^16 - 18*x^14 + 192*x^12 - 252*x^11 - 135*x^10 + 987*x^9 - 2123*x^8 - 4788*x^7 + 15615*x^6 + 14679*x^5 - 24042*x^4 - 11592*x^3 + 25749*x^2 - 11193*x + 1681, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 18*x^14 + 192*x^12 - 252*x^11 - 135*x^10 + 987*x^9 - 2123*x^8 - 4788*x^7 + 15615*x^6 + 14679*x^5 - 24042*x^4 - 11592*x^3 + 25749*x^2 - 11193*x + 1681); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 - 18*x^14 + 192*x^12 - 252*x^11 - 135*x^10 + 987*x^9 - 2123*x^8 - 4788*x^7 + 15615*x^6 + 14679*x^5 - 24042*x^4 - 11592*x^3 + 25749*x^2 - 11193*x + 1681); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_4\wr C_2$ (as 16T42):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A solvable group of order 32
The 14 conjugacy class representatives for $C_4\wr C_2$
Character table for $C_4\wr C_2$

Intermediate fields

\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{37}) \), \(\Q(\sqrt{-259}) \), 4.0.1813.1 x2, 4.2.9583.1 x2, \(\Q(\sqrt{-7}, \sqrt{37})\), 8.0.8158247197093.1, 8.0.5959274797.1, 8.0.4499860561.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 32
Degree 8 siblings: 8.0.8158247197093.1, 8.0.5959274797.1
Degree 16 sibling: 16.4.91116529343230957588293738481.1
Minimal sibling: 8.0.5959274797.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.4.0.1}{4} }^{2}{,}\,{\href{/padicField/2.2.0.1}{2} }^{4}$ ${\href{/padicField/3.2.0.1}{2} }^{8}$ ${\href{/padicField/5.8.0.1}{8} }^{2}$ R ${\href{/padicField/11.4.0.1}{4} }^{4}$ ${\href{/padicField/13.8.0.1}{8} }^{2}$ ${\href{/padicField/17.8.0.1}{8} }^{2}$ ${\href{/padicField/19.8.0.1}{8} }^{2}$ ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{4}$ ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{4}$ ${\href{/padicField/31.8.0.1}{8} }^{2}$ R ${\href{/padicField/41.2.0.1}{2} }^{8}$ ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{4}$ ${\href{/padicField/47.4.0.1}{4} }^{4}$ ${\href{/padicField/53.4.0.1}{4} }^{4}$ ${\href{/padicField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(7\) Copy content Toggle raw display 7.2.4.6a1.3$x^{8} + 24 x^{7} + 228 x^{6} + 1080 x^{5} + 2646 x^{4} + 3240 x^{3} + 2052 x^{2} + 655 x + 109$$4$$2$$6$$Q_8$$$[\ ]_{4}^{2}$$
7.2.4.6a1.3$x^{8} + 24 x^{7} + 228 x^{6} + 1080 x^{5} + 2646 x^{4} + 3240 x^{3} + 2052 x^{2} + 655 x + 109$$4$$2$$6$$Q_8$$$[\ ]_{4}^{2}$$
\(37\) Copy content Toggle raw display 37.2.4.6a1.4$x^{8} + 132 x^{7} + 6542 x^{6} + 144540 x^{5} + 1212081 x^{4} + 289080 x^{3} + 26168 x^{2} + 1204 x + 1311$$4$$2$$6$$C_4\times C_2$$$[\ ]_{4}^{2}$$
37.4.2.4a1.2$x^{8} + 12 x^{6} + 48 x^{5} + 40 x^{4} + 288 x^{3} + 600 x^{2} + 96 x + 41$$2$$4$$4$$C_4\times C_2$$$[\ ]_{2}^{4}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)