Normalized defining polynomial
\( x^{16} - 7 x^{15} + 27 x^{14} - 73 x^{13} + 160 x^{12} - 304 x^{11} + 509 x^{10} - 730 x^{9} + 869 x^{8} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(6634204312890625\)
\(\medspace = 5^{8}\cdot 19^{8}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(9.75\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{1/2}19^{1/2}\approx 9.746794344808963$ | ||
Ramified primes: |
\(5\), \(19\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Gal(K/\Q) }$: | $16$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5}a^{14}+\frac{2}{5}a^{13}+\frac{1}{5}a^{12}-\frac{2}{5}a^{11}-\frac{2}{5}a^{10}+\frac{1}{5}a^{9}+\frac{1}{5}a^{8}+\frac{1}{5}a^{5}-\frac{2}{5}a^{4}+\frac{2}{5}a^{3}+\frac{2}{5}a^{2}+\frac{2}{5}a-\frac{1}{5}$, $\frac{1}{85}a^{15}-\frac{1}{17}a^{14}+\frac{1}{5}a^{13}-\frac{39}{85}a^{12}-\frac{3}{85}a^{11}+\frac{6}{17}a^{10}-\frac{26}{85}a^{9}-\frac{1}{5}a^{8}-\frac{3}{17}a^{7}-\frac{19}{85}a^{6}+\frac{21}{85}a^{5}-\frac{2}{5}a^{4}-\frac{1}{5}a^{3}+\frac{38}{85}a^{2}+\frac{5}{17}a+\frac{42}{85}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$a^{15}-\frac{21}{5}a^{14}+\frac{48}{5}a^{13}-\frac{61}{5}a^{12}+\frac{52}{5}a^{11}+\frac{12}{5}a^{10}-\frac{216}{5}a^{9}+\frac{719}{5}a^{8}-278a^{7}+364a^{6}-\frac{1631}{5}a^{5}+\frac{1072}{5}a^{4}-\frac{552}{5}a^{3}+\frac{258}{5}a^{2}-\frac{82}{5}a+\frac{11}{5}$, $\frac{331}{85}a^{15}-\frac{2029}{85}a^{14}+\frac{417}{5}a^{13}-\frac{17533}{85}a^{12}+\frac{7227}{17}a^{11}-\frac{65397}{85}a^{10}+\frac{20763}{17}a^{9}-\frac{8083}{5}a^{8}+\frac{29250}{17}a^{7}-\frac{122059}{85}a^{6}+\frac{80442}{85}a^{5}-\frac{2538}{5}a^{4}+230a^{3}-\frac{1408}{17}a^{2}+\frac{1577}{85}a-\frac{174}{85}$, $\frac{5}{17}a^{15}-\frac{346}{85}a^{14}+\frac{104}{5}a^{13}-\frac{5701}{85}a^{12}+\frac{13627}{85}a^{11}-\frac{27368}{85}a^{10}+\frac{48429}{85}a^{9}-\frac{4408}{5}a^{8}+\frac{19305}{17}a^{7}-\frac{19917}{17}a^{6}+\frac{80119}{85}a^{5}-\frac{2979}{5}a^{4}+\frac{1534}{5}a^{3}-\frac{11392}{85}a^{2}+\frac{3668}{85}a-\frac{599}{85}$, $a^{15}-6a^{14}+20a^{13}-47a^{12}+93a^{11}-164a^{10}+252a^{9}-314a^{8}+303a^{7}-222a^{6}+129a^{5}-65a^{4}+27a^{3}-6a^{2}+a-1$, $\frac{32}{17}a^{15}-\frac{868}{85}a^{14}+\frac{162}{5}a^{13}-\frac{6138}{85}a^{12}+\frac{11726}{85}a^{11}-\frac{19799}{85}a^{10}+\frac{28922}{85}a^{9}-\frac{1929}{5}a^{8}+\frac{5300}{17}a^{7}-\frac{2461}{17}a^{6}+\frac{572}{85}a^{5}+\frac{223}{5}a^{4}-\frac{188}{5}a^{3}+\frac{2204}{85}a^{2}-\frac{1236}{85}a+\frac{328}{85}$, $\frac{67}{17}a^{15}-\frac{2202}{85}a^{14}+\frac{473}{5}a^{13}-\frac{20647}{85}a^{12}+\frac{43484}{85}a^{11}-\frac{80101}{85}a^{10}+\frac{129823}{85}a^{9}-\frac{10441}{5}a^{8}+\frac{39404}{17}a^{7}-\frac{34610}{17}a^{6}+\frac{120323}{85}a^{5}-\frac{3998}{5}a^{4}+\frac{1908}{5}a^{3}-\frac{12549}{85}a^{2}+\frac{3156}{85}a-\frac{363}{85}$, $\frac{462}{85}a^{15}-\frac{3024}{85}a^{14}+\frac{648}{5}a^{13}-\frac{28252}{85}a^{12}+\frac{59542}{85}a^{11}-\frac{109747}{85}a^{10}+\frac{177929}{85}a^{9}-\frac{14314}{5}a^{8}+\frac{54136}{17}a^{7}-\frac{238873}{85}a^{6}+\frac{167343}{85}a^{5}-1120a^{4}+\frac{2674}{5}a^{3}-\frac{17702}{85}a^{2}+\frac{4682}{85}a-\frac{622}{85}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 11.4915268613 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 11.4915268613 \cdot 1}{2\cdot\sqrt{6634204312890625}}\cr\approx \mathstrut & 0.171353218687 \end{aligned}\]
Galois group
A solvable group of order 16 |
The 7 conjugacy class representatives for $D_{8}$ |
Character table for $D_{8}$ |
Intermediate fields
\(\Q(\sqrt{-95}) \), \(\Q(\sqrt{-19}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{-19})\), 4.0.1805.1 x2, 4.2.475.1 x2, 8.0.81450625.1, 8.0.16290125.1 x4, 8.2.4286875.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 8 siblings: | 8.2.4286875.1, 8.0.16290125.1 |
Minimal sibling: | 8.2.4286875.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/7.2.0.1}{2} }^{8}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.2.0.1}{2} }^{8}$ | R | ${\href{/padicField/23.2.0.1}{2} }^{8}$ | ${\href{/padicField/29.2.0.1}{2} }^{8}$ | ${\href{/padicField/31.2.0.1}{2} }^{8}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{8}$ | ${\href{/padicField/43.2.0.1}{2} }^{8}$ | ${\href{/padicField/47.2.0.1}{2} }^{8}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\)
| 5.4.2.1 | $x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
5.4.2.1 | $x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
5.4.2.1 | $x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
5.4.2.1 | $x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
\(19\)
| 19.4.2.1 | $x^{4} + 36 x^{3} + 366 x^{2} + 756 x + 6445$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
19.4.2.1 | $x^{4} + 36 x^{3} + 366 x^{2} + 756 x + 6445$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
19.4.2.1 | $x^{4} + 36 x^{3} + 366 x^{2} + 756 x + 6445$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
19.4.2.1 | $x^{4} + 36 x^{3} + 366 x^{2} + 756 x + 6445$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |