Normalized defining polynomial
\( x^{16} - 4 x^{15} + 40 x^{14} - 148 x^{13} + 1571 x^{12} - 4118 x^{11} + 24526 x^{10} - 28397 x^{9} + 311548 x^{8} - 145806 x^{7} + 2070325 x^{6} + 6468196 x^{5} + 678072 x^{4} + 4456149 x^{3} + 59480154 x^{2} - 75302539 x + 22248343 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(662834267162184237456650608633249=17^{14}\cdot 89^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $112.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{26} a^{13} + \frac{5}{26} a^{12} + \frac{5}{13} a^{11} + \frac{9}{26} a^{10} + \frac{5}{26} a^{9} + \frac{5}{13} a^{8} + \frac{9}{26} a^{7} - \frac{11}{26} a^{6} - \frac{2}{13} a^{5} + \frac{11}{26} a^{4} - \frac{7}{26} a^{3} - \frac{5}{13} a^{2} + \frac{11}{26} a - \frac{1}{2}$, $\frac{1}{26} a^{14} - \frac{1}{13} a^{12} + \frac{11}{26} a^{11} + \frac{6}{13} a^{10} - \frac{1}{13} a^{9} + \frac{11}{26} a^{8} - \frac{2}{13} a^{7} + \frac{6}{13} a^{6} + \frac{5}{26} a^{5} - \frac{5}{13} a^{4} + \frac{6}{13} a^{3} + \frac{9}{26} a^{2} + \frac{5}{13} a$, $\frac{1}{222978046845111782890543009229574327633223868410816287442} a^{15} + \frac{1588529886236406297709805317678375283610293870139819413}{111489023422555891445271504614787163816611934205408143721} a^{14} - \frac{2759362668243844646908308833725313760898845538107743635}{222978046845111782890543009229574327633223868410816287442} a^{13} + \frac{25081797358632786037678199231763808069318163536729400195}{111489023422555891445271504614787163816611934205408143721} a^{12} + \frac{18464050045933411914884685739956134418804292211599458118}{111489023422555891445271504614787163816611934205408143721} a^{11} + \frac{61118105638516248767797142087989457641692808721303410197}{222978046845111782890543009229574327633223868410816287442} a^{10} - \frac{26386812844497297860002263708155204054113882396425503638}{111489023422555891445271504614787163816611934205408143721} a^{9} - \frac{54070712686605957309675089817439523935031852893491288006}{111489023422555891445271504614787163816611934205408143721} a^{8} + \frac{12080067933952593734105717339342443748824686466258459201}{222978046845111782890543009229574327633223868410816287442} a^{7} - \frac{24092360219035218536019034810815836719220613833400694647}{111489023422555891445271504614787163816611934205408143721} a^{6} + \frac{13246200973855561566646203975971539479808570107218538244}{111489023422555891445271504614787163816611934205408143721} a^{5} - \frac{62084214735187191544929920847574391273291579114428572931}{222978046845111782890543009229574327633223868410816287442} a^{4} + \frac{20057064984039764265915046104849766990754569294194914081}{111489023422555891445271504614787163816611934205408143721} a^{3} + \frac{55172494842303970866930406319044043915575262489834776670}{111489023422555891445271504614787163816611934205408143721} a^{2} - \frac{110761358253993065535077489733609018555547922011141713955}{222978046845111782890543009229574327633223868410816287442} a - \frac{170902444114095383503762425316328560116591436787991981}{364939520204765602112181684500121649154212550590534022}$
Class group and class number
$C_{2}\times C_{2}\times C_{10}$, which has order $40$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 148444206.244 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^5.C_2.C_2$ (as 16T257):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_2^5.C_2.C_2$ |
| Character table for $C_2^5.C_2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.4.289276043966137.1, 8.0.3250292628833.2, 8.4.17016237880361.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 89 | Data not computed | ||||||