Normalized defining polynomial
\( x^{16} - 4 x^{15} + 118 x^{14} - 472 x^{13} + 5424 x^{12} - 20302 x^{11} + 128672 x^{10} - 406704 x^{9} + 1604631 x^{8} - 4306308 x^{7} + 11524894 x^{6} - 23360988 x^{5} + 42254283 x^{4} - 49841930 x^{3} + 55061061 x^{2} - 30043348 x + 6029561 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(662834267162184237456650608633249=17^{14}\cdot 89^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $112.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{34} a^{8} - \frac{1}{17} a^{7} + \frac{3}{17} a^{6} + \frac{7}{17} a^{5} - \frac{15}{34} a^{4} - \frac{7}{17} a^{3} - \frac{11}{34} a^{2} - \frac{15}{34} a + \frac{1}{34}$, $\frac{1}{34} a^{9} + \frac{1}{17} a^{7} - \frac{4}{17} a^{6} + \frac{13}{34} a^{5} - \frac{5}{17} a^{4} - \frac{5}{34} a^{3} - \frac{3}{34} a^{2} + \frac{5}{34} a + \frac{1}{17}$, $\frac{1}{34} a^{10} - \frac{2}{17} a^{7} + \frac{1}{34} a^{6} - \frac{2}{17} a^{5} - \frac{9}{34} a^{4} - \frac{9}{34} a^{3} - \frac{7}{34} a^{2} - \frac{1}{17} a - \frac{1}{17}$, $\frac{1}{34} a^{11} - \frac{7}{34} a^{7} - \frac{7}{17} a^{6} + \frac{13}{34} a^{5} - \frac{1}{34} a^{4} + \frac{5}{34} a^{3} - \frac{6}{17} a^{2} + \frac{3}{17} a + \frac{2}{17}$, $\frac{1}{48586} a^{12} - \frac{383}{48586} a^{11} - \frac{277}{48586} a^{10} - \frac{343}{48586} a^{9} - \frac{665}{48586} a^{8} + \frac{6445}{48586} a^{7} + \frac{3324}{24293} a^{6} + \frac{1361}{48586} a^{5} + \frac{10129}{48586} a^{4} - \frac{6561}{48586} a^{3} + \frac{11263}{24293} a^{2} + \frac{19369}{48586} a + \frac{11147}{24293}$, $\frac{1}{48586} a^{13} + \frac{13}{2858} a^{11} - \frac{344}{24293} a^{10} - \frac{283}{24293} a^{9} + \frac{198}{24293} a^{8} + \frac{5029}{24293} a^{7} + \frac{12499}{48586} a^{6} + \frac{21239}{48586} a^{5} + \frac{13117}{48586} a^{4} + \frac{3063}{24293} a^{3} - \frac{1481}{48586} a^{2} - \frac{13043}{48586} a + \frac{878}{24293}$, $\frac{1}{2283542} a^{14} + \frac{3}{1141771} a^{13} + \frac{15}{2283542} a^{12} - \frac{13105}{1141771} a^{11} - \frac{23369}{2283542} a^{10} + \frac{31933}{2283542} a^{9} + \frac{16527}{2283542} a^{8} - \frac{211653}{2283542} a^{7} + \frac{441553}{1141771} a^{6} - \frac{116350}{1141771} a^{5} - \frac{354965}{1141771} a^{4} + \frac{955283}{2283542} a^{3} - \frac{112620}{1141771} a^{2} + \frac{25314}{67163} a - \frac{976661}{2283542}$, $\frac{1}{3560617928841156834962505241441764394} a^{15} + \frac{6570593991708039464622836768}{104724056730622259851838389454169541} a^{14} - \frac{21209216486426480657859109149755}{3560617928841156834962505241441764394} a^{13} - \frac{428796946869437979571485132889}{209448113461244519703676778908339082} a^{12} - \frac{11435673802468136280660525556712481}{3560617928841156834962505241441764394} a^{11} + \frac{35181636007125008027935812246681401}{3560617928841156834962505241441764394} a^{10} + \frac{20702124056813853883952809565933841}{3560617928841156834962505241441764394} a^{9} - \frac{20214721388256825857813471460804377}{1780308964420578417481252620720882197} a^{8} - \frac{29896586212520240904659394462715020}{1780308964420578417481252620720882197} a^{7} - \frac{566841966816848944360448464836415779}{3560617928841156834962505241441764394} a^{6} - \frac{1550914320508297687367549150618754997}{3560617928841156834962505241441764394} a^{5} - \frac{832459831365455188678655998647102900}{1780308964420578417481252620720882197} a^{4} + \frac{252559519828898541808739499459061440}{1780308964420578417481252620720882197} a^{3} - \frac{571380949822486573777976272306082343}{1780308964420578417481252620720882197} a^{2} - \frac{393458103787724298663360970825121223}{3560617928841156834962505241441764394} a - \frac{354825911274067914105192432324226162}{1780308964420578417481252620720882197}$
Class group and class number
$C_{2}\times C_{10}\times C_{10}$, which has order $200$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22977967.6331 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8: C_2$ |
| Character table for $C_8: C_2$ |
Intermediate fields
| \(\Q(\sqrt{1513}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{89}) \), \(\Q(\sqrt{17}, \sqrt{89})\), 4.4.4913.1, 4.4.38915873.1, 8.8.1514445171352129.1, 8.0.3250292628833.2 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $89$ | 89.2.1.1 | $x^{2} - 89$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 89.2.1.1 | $x^{2} - 89$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.1.1 | $x^{2} - 89$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.1.1 | $x^{2} - 89$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.1.1 | $x^{2} - 89$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.1.1 | $x^{2} - 89$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.1.1 | $x^{2} - 89$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.1.1 | $x^{2} - 89$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |