Normalized defining polynomial
\( x^{16} - 2 x^{15} + 3 x^{14} + 8 x^{13} - 16 x^{12} + 21 x^{11} + 16 x^{10} - 38 x^{9} + 57 x^{8} - 11 x^{7} - 26 x^{6} + 63 x^{5} - 16 x^{4} - x^{3} + 24 x^{2} - 5 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(66202447602479769=3^{14}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $11.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{9} + \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{3}$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{12} + \frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{9} a^{4} - \frac{2}{9} a^{3} - \frac{1}{3} a^{2} - \frac{2}{9} a - \frac{2}{9}$, $\frac{1}{2115} a^{14} - \frac{46}{2115} a^{13} - \frac{10}{423} a^{12} - \frac{49}{423} a^{11} - \frac{301}{2115} a^{10} - \frac{55}{423} a^{9} - \frac{3}{235} a^{8} - \frac{56}{141} a^{7} + \frac{247}{705} a^{6} + \frac{65}{423} a^{5} - \frac{268}{2115} a^{4} + \frac{1}{9} a^{3} + \frac{122}{423} a^{2} - \frac{286}{2115} a + \frac{538}{2115}$, $\frac{1}{167085} a^{15} - \frac{2}{11139} a^{14} + \frac{913}{55695} a^{13} + \frac{637}{33417} a^{12} - \frac{1879}{18565} a^{11} + \frac{1001}{18565} a^{10} + \frac{12493}{167085} a^{9} + \frac{6626}{55695} a^{8} - \frac{5641}{18565} a^{7} - \frac{59729}{167085} a^{6} - \frac{4622}{18565} a^{5} + \frac{18154}{55695} a^{4} + \frac{5527}{33417} a^{3} - \frac{16582}{55695} a^{2} - \frac{7577}{18565} a - \frac{25232}{167085}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{84}{395} a^{15} + \frac{30}{79} a^{14} - \frac{186}{395} a^{13} - \frac{470}{237} a^{12} + \frac{1289}{395} a^{11} - \frac{3758}{1185} a^{10} - \frac{6406}{1185} a^{9} + \frac{3468}{395} a^{8} - \frac{3774}{395} a^{7} - \frac{844}{395} a^{6} + \frac{3617}{395} a^{5} - \frac{5448}{395} a^{4} + \frac{124}{237} a^{3} + \frac{1144}{395} a^{2} - \frac{6554}{1185} a + \frac{1334}{1185} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 134.265380275 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $QD_{16}$ |
| Character table for $QD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}, \sqrt{-7})\), 4.2.1323.1 x2, 4.0.189.1 x2, 8.0.1750329.1, 8.2.257298363.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $7$ | 7.8.6.1 | $x^{8} + 35 x^{4} + 441$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 7.8.6.1 | $x^{8} + 35 x^{4} + 441$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |