Normalized defining polynomial
\( x^{16} - 5 x^{15} - 56 x^{14} + 250 x^{13} + 1757 x^{12} - 5950 x^{11} - 36793 x^{10} + 75280 x^{9} + 566450 x^{8} - 462345 x^{7} - 6343597 x^{6} - 149590 x^{5} + 49799537 x^{4} + 16695220 x^{3} - 238936324 x^{2} - 59152745 x + 510242801 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(66092328224370123291015625=5^{14}\cdot 101^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{515252850394319845178332348244953165675821911739660229} a^{15} + \frac{187539751248849237733332521067615213190633435285147762}{515252850394319845178332348244953165675821911739660229} a^{14} + \frac{238909280507371404258631956435594776227565834332032279}{515252850394319845178332348244953165675821911739660229} a^{13} - \frac{146352373890660579178119751972843819985423734756194847}{515252850394319845178332348244953165675821911739660229} a^{12} + \frac{182281171844407676397502877379597552607528789361103068}{515252850394319845178332348244953165675821911739660229} a^{11} + \frac{139297077644537142948261564432979768097074416167400792}{515252850394319845178332348244953165675821911739660229} a^{10} - \frac{180533303703037664624079087903901788227851331853934711}{515252850394319845178332348244953165675821911739660229} a^{9} + \frac{3921225649708006451861634755330554888749857061607125}{515252850394319845178332348244953165675821911739660229} a^{8} - \frac{20923954839809379286454037759150548724617294910054085}{515252850394319845178332348244953165675821911739660229} a^{7} - \frac{18422215474628528247951136685996455976379297980793888}{515252850394319845178332348244953165675821911739660229} a^{6} + \frac{187246043395927932186864950168711651484517046179590280}{515252850394319845178332348244953165675821911739660229} a^{5} + \frac{97088196414669248520613728444803195833833557575392024}{515252850394319845178332348244953165675821911739660229} a^{4} - \frac{208417530384744115334032370000213138412498164885660381}{515252850394319845178332348244953165675821911739660229} a^{3} + \frac{38175982935493924489601423845011774839490428476569974}{515252850394319845178332348244953165675821911739660229} a^{2} + \frac{222616310403751379825945833009255413665907896134832291}{515252850394319845178332348244953165675821911739660229} a + \frac{24809951918484241300795275937492566103072639123628147}{515252850394319845178332348244953165675821911739660229}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1431748995101215615752797975685346756105530}{5237320726505319575714135333498878499667841470809} a^{15} + \frac{3612561819301964248390326022336162318187622}{5237320726505319575714135333498878499667841470809} a^{14} + \frac{87390146592103003982990408564722748792079882}{5237320726505319575714135333498878499667841470809} a^{13} - \frac{129650098064057666073886751750496840424969841}{5237320726505319575714135333498878499667841470809} a^{12} - \frac{2745446505678591041797137406743514975971990863}{5237320726505319575714135333498878499667841470809} a^{11} + \frac{1150011735684781325479790921924791853778866274}{5237320726505319575714135333498878499667841470809} a^{10} + \frac{52624229112889582946938250514278754622018746976}{5237320726505319575714135333498878499667841470809} a^{9} + \frac{35544829216824390089021112331534002859018257986}{5237320726505319575714135333498878499667841470809} a^{8} - \frac{660790872126300221343643259526820110911645537691}{5237320726505319575714135333498878499667841470809} a^{7} - \frac{1125687429113119615690077072790609735361384689088}{5237320726505319575714135333498878499667841470809} a^{6} + \frac{5339191691102188921540098187362496413483029918589}{5237320726505319575714135333498878499667841470809} a^{5} + \frac{14213395849864746540686093078500062639124003253817}{5237320726505319575714135333498878499667841470809} a^{4} - \frac{26198233075740479190914714023552357084327240629590}{5237320726505319575714135333498878499667841470809} a^{3} - \frac{87200197892318032427450502954444443916228885647773}{5237320726505319575714135333498878499667841470809} a^{2} + \frac{60241946472866514802239694220781904049009724958979}{5237320726505319575714135333498878499667841470809} a + \frac{212984413475243133612586940005034316185230592948727}{5237320726505319575714135333498878499667841470809} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 872881.884776 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1263 |
| Character table for t16n1263 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.1578125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 101 | Data not computed | ||||||