Normalized defining polynomial
\( x^{16} + 24 x^{14} - 1024 x^{12} - 28619 x^{10} + 175088 x^{8} + 9841099 x^{6} + 91602093 x^{4} + 300750338 x^{2} + 214651801 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(658590075672306993006756541342366441=19^{12}\cdot 29^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $173.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{14} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{14} a^{2} - \frac{1}{2}$, $\frac{1}{14} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{14} a^{3} - \frac{1}{2} a$, $\frac{1}{14} a^{10} - \frac{1}{14} a^{7} - \frac{1}{2} a^{5} - \frac{1}{14} a^{4} - \frac{1}{2} a^{2} - \frac{3}{7} a$, $\frac{1}{14} a^{11} - \frac{1}{2} a^{6} + \frac{3}{7} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{98} a^{12} - \frac{3}{98} a^{10} + \frac{1}{49} a^{8} - \frac{11}{49} a^{6} - \frac{1}{2} a^{5} + \frac{17}{98} a^{4} - \frac{1}{2} a^{3} + \frac{5}{98} a^{2} - \frac{1}{2} a$, $\frac{1}{2254} a^{13} - \frac{59}{2254} a^{11} + \frac{9}{2254} a^{9} - \frac{32}{1127} a^{7} + \frac{563}{2254} a^{5} + \frac{48}{1127} a^{3} - \frac{1}{2} a^{2} + \frac{83}{322} a$, $\frac{1}{3502101580557429911642} a^{14} + \frac{5459186138863131979}{1751050790278714955821} a^{12} - \frac{19935707660289618677}{3502101580557429911642} a^{10} + \frac{68448115542878280919}{3502101580557429911642} a^{8} - \frac{1}{14} a^{7} - \frac{345041520928359494525}{3502101580557429911642} a^{6} - \frac{1}{2} a^{5} + \frac{188033785599401050696}{1751050790278714955821} a^{4} - \frac{1}{2} a^{3} + \frac{590077223807905348051}{1751050790278714955821} a^{2} + \frac{1}{14} a + \frac{785242415116775203}{3107454818595767446}$, $\frac{1}{318691243830726121959422} a^{15} - \frac{13185542772711472697}{159345621915363060979711} a^{13} - \frac{2036805259259234125992}{159345621915363060979711} a^{11} + \frac{4244048473264055087928}{159345621915363060979711} a^{9} - \frac{5463019607155588478087}{318691243830726121959422} a^{7} - \frac{1}{2} a^{6} - \frac{87908277552516248923191}{318691243830726121959422} a^{5} + \frac{79348519601117631266921}{159345621915363060979711} a^{3} - \frac{1}{2} a^{2} - \frac{117598496083934608590}{3251951467660470632239} a$
Class group and class number
$C_{5}\times C_{5}\times C_{65}$, which has order $1625$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1385349207.51 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8: C_2$ |
| Character table for $C_8: C_2$ |
Intermediate fields
| \(\Q(\sqrt{-551}) \), \(\Q(\sqrt{29}) \), \(\Q(\sqrt{-19}) \), \(\Q(\sqrt{-19}, \sqrt{29})\), 4.4.8804429.1, 4.0.24389.1, 8.0.77517970016041.1, 8.4.811535628097933229.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/23.1.0.1}{1} }^{16}$ | R | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 19 | Data not computed | ||||||
| 29 | Data not computed | ||||||