Normalized defining polynomial
\( x^{16} - 8 x^{15} + 58 x^{14} - 244 x^{13} + 1015 x^{12} - 3068 x^{11} + 9712 x^{10} - 22856 x^{9} + 55650 x^{8} - 95716 x^{7} + 182566 x^{6} - 220324 x^{5} + 312484 x^{4} - 112808 x^{3} + 52714 x^{2} + 12464 x + 1681 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(65790008098816000000000000=2^{32}\cdot 5^{12}\cdot 89^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{257396041177288495396870638491286499} a^{15} - \frac{13832448325738241557848832315980485}{257396041177288495396870638491286499} a^{14} + \frac{25245754339565766040018101585947809}{257396041177288495396870638491286499} a^{13} - \frac{79919830447582505980022008477489039}{257396041177288495396870638491286499} a^{12} - \frac{104712553024269814177115817891712382}{257396041177288495396870638491286499} a^{11} + \frac{13160296867144286065517941589967505}{257396041177288495396870638491286499} a^{10} - \frac{46579497880318804130776259482824274}{257396041177288495396870638491286499} a^{9} + \frac{11408015021068672508449742679219850}{257396041177288495396870638491286499} a^{8} + \frac{85660075664642994840285037735510292}{257396041177288495396870638491286499} a^{7} - \frac{18618273627044311631561125708356515}{257396041177288495396870638491286499} a^{6} + \frac{87941913959562373153661983617308587}{257396041177288495396870638491286499} a^{5} - \frac{127241160150641882039418139940938367}{257396041177288495396870638491286499} a^{4} - \frac{68051240848375233157542077131648186}{257396041177288495396870638491286499} a^{3} - \frac{99682973913339295322881037278008463}{257396041177288495396870638491286499} a^{2} - \frac{15361186085966382242695906171532742}{36770863025326927913838662641612357} a - \frac{1138021360224955532137465186289131}{6277952223836304765777332646128939}$
Class group and class number
$C_{2}\times C_{6}\times C_{6}$, which has order $72$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18891.2708489 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3$ (as 16T217):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_2^4.C_2^3$ |
| Character table for $C_2^4.C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}, \sqrt{5})\), 8.4.91136000000.1, 8.0.8111104000000.27, 8.4.227840000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 89 | Data not computed | ||||||