Normalized defining polynomial
\( x^{16} - 3 x^{15} + 12 x^{14} - 10 x^{13} + 37 x^{12} + 5 x^{11} + 131 x^{10} - 17 x^{9} + 569 x^{8} - 232 x^{7} + 1176 x^{6} + 120 x^{5} + 1232 x^{4} + 160 x^{3} + 1152 x^{2} + 512 x + 256 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(656573649364172265625=5^{8}\cdot 29^{6}\cdot 41^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{3}{8} a^{5} - \frac{3}{8} a^{4} - \frac{1}{8} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{7}{16} a^{8} - \frac{1}{16} a^{7} + \frac{5}{16} a^{6} + \frac{5}{16} a^{5} + \frac{7}{16} a^{4} - \frac{3}{8} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{32} a^{13} - \frac{1}{32} a^{12} - \frac{1}{16} a^{11} - \frac{1}{16} a^{10} - \frac{7}{32} a^{9} + \frac{15}{32} a^{8} - \frac{11}{32} a^{7} + \frac{5}{32} a^{6} + \frac{7}{32} a^{5} + \frac{5}{16} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{14} - \frac{1}{64} a^{13} - \frac{1}{32} a^{12} - \frac{1}{32} a^{11} - \frac{7}{64} a^{10} + \frac{15}{64} a^{9} - \frac{11}{64} a^{8} - \frac{27}{64} a^{7} + \frac{7}{64} a^{6} - \frac{11}{32} a^{5} + \frac{3}{8} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{420334943881088} a^{15} + \frac{2510081700775}{420334943881088} a^{14} + \frac{3212602678087}{210167471940544} a^{13} - \frac{5766801856389}{210167471940544} a^{12} - \frac{24996946719687}{420334943881088} a^{11} - \frac{21284548007737}{420334943881088} a^{10} + \frac{13136392629957}{420334943881088} a^{9} - \frac{9210923649355}{420334943881088} a^{8} - \frac{76942524685145}{420334943881088} a^{7} + \frac{74040826618541}{210167471940544} a^{6} - \frac{12448807481465}{26270933992568} a^{5} - \frac{5764539234757}{13135466996284} a^{4} - \frac{3929292281191}{26270933992568} a^{3} + \frac{634329953023}{3283866749071} a^{2} + \frac{1654989429781}{6567733498142} a + \frac{274161543616}{3283866749071}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1493.70001813 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.C_2^2:D_4$ (as 16T211):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $C_4.C_2^2:D_4$ |
| Character table for $C_4.C_2^2:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, 4.0.29725.2, 4.0.1025.1, 8.4.25623693125.1, 8.4.15243125.1, 8.0.883575625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.4.3.4 | $x^{4} + 232$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 29.4.3.4 | $x^{4} + 232$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $41$ | 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |