Normalized defining polynomial
\( x^{16} + 2 x^{14} - 20 x^{13} - 22 x^{12} + 192 x^{11} - 336 x^{10} + 4 x^{9} + 1153 x^{8} - 2616 x^{7} + 3658 x^{6} - 3936 x^{5} + 3858 x^{4} - 3488 x^{3} + 2636 x^{2} - 1320 x + 340 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(655344390478233600000000=2^{36}\cdot 3^{8}\cdot 5^{8}\cdot 61^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{10} a^{14} - \frac{1}{10} a^{13} - \frac{1}{10} a^{12} + \frac{1}{5} a^{10} - \frac{2}{5} a^{8} - \frac{1}{5} a^{7} + \frac{1}{10} a^{6} + \frac{1}{10} a^{5} + \frac{3}{10} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2}$, $\frac{1}{79956114672762004270} a^{15} + \frac{478762271565103827}{79956114672762004270} a^{14} - \frac{4825488446618538217}{39978057336381002135} a^{13} + \frac{269543633324032649}{1378553701254517315} a^{12} - \frac{7528064755871048219}{39978057336381002135} a^{11} - \frac{9349404727211714412}{39978057336381002135} a^{10} - \frac{9439979410872477897}{39978057336381002135} a^{9} - \frac{9035250817295874822}{39978057336381002135} a^{8} - \frac{5570431200044075417}{15991222934552400854} a^{7} - \frac{39060364903243221861}{79956114672762004270} a^{6} - \frac{614788456293315391}{2351650431551823655} a^{5} + \frac{13105083235120638688}{39978057336381002135} a^{4} - \frac{593345067626889390}{7995611467276200427} a^{3} - \frac{17975065026308218529}{39978057336381002135} a^{2} + \frac{1839534391528574028}{7995611467276200427} a - \frac{137946352826270280}{470330086310364731}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{42539483196}{683479237991} a^{15} + \frac{33758596605}{1366958475982} a^{14} + \frac{77575951383}{683479237991} a^{13} - \frac{840778623633}{683479237991} a^{12} - \frac{1320497994982}{683479237991} a^{11} + \frac{7865616628970}{683479237991} a^{10} - \frac{10502231997864}{683479237991} a^{9} - \frac{5854308809947}{683479237991} a^{8} + \frac{48399746623034}{683479237991} a^{7} - \frac{177596309167219}{1366958475982} a^{6} + \frac{107814222830557}{683479237991} a^{5} - \frac{107396425896336}{683479237991} a^{4} + \frac{101706468954364}{683479237991} a^{3} - \frac{90570711419842}{683479237991} a^{2} + \frac{58043819340010}{683479237991} a - \frac{19139600929743}{683479237991} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 705203.75617 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 61 conjugacy class representatives for t16n1228 are not computed |
| Character table for t16n1228 is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{15}) \), 4.0.11520.1, 4.0.1280.1, \(\Q(i, \sqrt{15})\), 8.0.3317760000.11 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.20.75 | $x^{8} + 8 x^{6} + 16 x^{5} + 80$ | $8$ | $1$ | $20$ | $C_2^3 : C_4 $ | $[2, 3, 3]^{2}$ |
| 2.8.16.4 | $x^{8} + 6 x^{6} + 6 x^{4} + 8 x^{3} + 4 x^{2} + 8 x + 20$ | $4$ | $2$ | $16$ | $D_4$ | $[2, 3]^{2}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61 | Data not computed | ||||||