Normalized defining polynomial
\( x^{16} + 10 x^{14} - 12 x^{13} + 72 x^{12} - 88 x^{11} + 506 x^{10} - 1000 x^{9} + 2779 x^{8} - 5288 x^{7} + 11524 x^{6} - 15508 x^{5} + 14382 x^{4} - 8880 x^{3} + 4956 x^{2} - 2920 x + 850 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(655344390478233600000000=2^{36}\cdot 3^{8}\cdot 5^{8}\cdot 61^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9}$, $\frac{1}{440} a^{14} - \frac{27}{110} a^{13} + \frac{109}{440} a^{12} - \frac{1}{10} a^{11} - \frac{1}{440} a^{10} - \frac{5}{11} a^{9} - \frac{19}{40} a^{8} - \frac{17}{110} a^{7} + \frac{21}{55} a^{6} + \frac{7}{110} a^{5} - \frac{9}{22} a^{4} - \frac{1}{55} a^{3} - \frac{47}{220} a^{2} + \frac{9}{55} a + \frac{13}{44}$, $\frac{1}{2172146996624093819210320} a^{15} + \frac{92920168608428366683}{434429399324818763842064} a^{14} + \frac{107712104635016436050373}{434429399324818763842064} a^{13} - \frac{350483254617928662373397}{2172146996624093819210320} a^{12} - \frac{26275044821908148900613}{2172146996624093819210320} a^{11} + \frac{809713931687272286257437}{2172146996624093819210320} a^{10} + \frac{44566614650914496415911}{2172146996624093819210320} a^{9} - \frac{71329253416834893910459}{434429399324818763842064} a^{8} - \frac{45243323552765462594049}{543036749156023454802580} a^{7} + \frac{102442098238410242754073}{543036749156023454802580} a^{6} + \frac{18066521858101242593789}{135759187289005863700645} a^{5} + \frac{185472958574020158791153}{543036749156023454802580} a^{4} + \frac{405939277502587785013281}{1086073498312046909605160} a^{3} + \frac{6129800538594554098449}{19746790878400852901912} a^{2} - \frac{418218913852628545475267}{1086073498312046909605160} a + \frac{11647962444353920181235}{217214699662409381921032}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{119788537041}{49967330377844} a^{15} + \frac{46116318815}{24983665188922} a^{14} + \frac{1263418204131}{49967330377844} a^{13} - \frac{118640050495}{12491832594461} a^{12} + \frac{8208870941351}{49967330377844} a^{11} - \frac{2186708026971}{24983665188922} a^{10} + \frac{56938545161385}{49967330377844} a^{9} - \frac{19210783838019}{12491832594461} a^{8} + \frac{68030731080716}{12491832594461} a^{7} - \frac{107074506126755}{12491832594461} a^{6} + \frac{262134426176125}{12491832594461} a^{5} - \frac{269045826937537}{12491832594461} a^{4} + \frac{468311321344133}{24983665188922} a^{3} - \frac{120363134394001}{12491832594461} a^{2} + \frac{169913853013115}{24983665188922} a - \frac{39202645697323}{12491832594461} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1614321.58086 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 61 conjugacy class representatives for t16n1228 are not computed |
| Character table for t16n1228 is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{15}) \), 4.0.1280.1, 4.0.11520.1, \(\Q(i, \sqrt{15})\), 8.0.3317760000.11 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.8.6 | $x^{4} + 6 x^{2} + 4 x + 2$ | $4$ | $1$ | $8$ | $D_{4}$ | $[2, 3]^{2}$ |
| 2.4.8.6 | $x^{4} + 6 x^{2} + 4 x + 2$ | $4$ | $1$ | $8$ | $D_{4}$ | $[2, 3]^{2}$ | |
| 2.8.20.75 | $x^{8} + 8 x^{6} + 16 x^{5} + 80$ | $8$ | $1$ | $20$ | $C_2^3 : C_4 $ | $[2, 3, 3]^{2}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61 | Data not computed | ||||||