/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^16 - 5*x^15 + 23*x^14 - 60*x^13 + 148*x^12 - 140*x^11 - 124*x^10 + 1260*x^9 - 2160*x^8 + 1975*x^7 + 2431*x^6 - 5905*x^5 + 7323*x^4 + 640*x^3 - 4487*x^2 + 5700*x + 4061, 16, 1281, [0, 8], 654379487370001220703125, [5, 101], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9, a^10, a^11, a^12, 1/61*a^13 - 1/61*a^12 - 27/61*a^11 - 27/61*a^10 + 28/61*a^9 - 9/61*a^8 + 13/61*a^7 - 6/61*a^6 + 23/61*a^5 - 21/61*a^4 - 13/61*a^3 + 9/61*a - 10/61, 1/7442*a^14 + 9/3721*a^13 - 1243/3721*a^12 + 889/3721*a^11 - 212/3721*a^10 + 1207/3721*a^9 - 79/3721*a^8 - 1740/3721*a^7 + 46/3721*a^6 + 2917/7442*a^5 + 770/3721*a^4 + 944/3721*a^3 - 357/7442*a^2 + 3211/7442*a - 3423/7442, 1/50392324488317080258*a^15 - 321291165700321/25196162244158540129*a^14 - 204464160435337145/25196162244158540129*a^13 - 367951459233663402/1326113802324133691*a^12 - 11798113508735928228/25196162244158540129*a^11 - 431526046476339129/25196162244158540129*a^10 - 32529476975600235/2290560204014412739*a^9 + 4331138135293489578/25196162244158540129*a^8 - 8702072773718720082/25196162244158540129*a^7 - 572395681772275491/2652227604648267382*a^6 - 154048114184098714/25196162244158540129*a^5 + 4233096731566042789/25196162244158540129*a^4 - 17613737819400402899/50392324488317080258*a^3 - 19437208704996859149/50392324488317080258*a^2 - 1854145324492163981/4581120408028825478*a - 546574498440826690/25196162244158540129], 0, 8, [2, 4], 1, [ (176562065410686)/(1326113802324133691)*a^(15) - (736855622739549)/(1326113802324133691)*a^(14) + (3375434812946981)/(1326113802324133691)*a^(13) - (7762956944173474)/(1326113802324133691)*a^(12) + (19599936780889052)/(1326113802324133691)*a^(11) - (13463441213287568)/(1326113802324133691)*a^(10) - (1690758386027578)/(120555800211284881)*a^(9) + (146733988796973880)/(1326113802324133691)*a^(8) - (154002809781580552)/(1326113802324133691)*a^(7) + (73385960852214555)/(1326113802324133691)*a^(6) + (217803162140967903)/(1326113802324133691)*a^(5) + (108919434466800401)/(1326113802324133691)*a^(4) - (207784569826252101)/(1326113802324133691)*a^(3) + (144868590933510201)/(1326113802324133691)*a^(2) + (49020250719563694)/(120555800211284881)*a - (587575161089721015)/(1326113802324133691) , (80717580220747571)/(50392324488317080258)*a^(15) - (143162819225140133)/(50392324488317080258)*a^(14) + (408967092277364782)/(25196162244158540129)*a^(13) - (11325724266162390)/(1326113802324133691)*a^(12) + (928701927684532128)/(25196162244158540129)*a^(11) + (5705062276614840103)/(25196162244158540129)*a^(10) - (852417481202491569)/(2290560204014412739)*a^(9) + (23007735826370296370)/(25196162244158540129)*a^(8) + (16415360021735544057)/(25196162244158540129)*a^(7) - (3430281429697611177)/(2652227604648267382)*a^(6) + (178328301939915164973)/(50392324488317080258)*a^(5) + (2334220080093113868)/(25196162244158540129)*a^(4) - (37871617571083390015)/(50392324488317080258)*a^(3) + (103574995166368544941)/(25196162244158540129)*a^(2) + (3594410694257339422)/(2290560204014412739)*a - (9708920924936141267)/(50392324488317080258) , (20073917000685617)/(25196162244158540129)*a^(15) - (109220483543321989)/(50392324488317080258)*a^(14) + (271119574794651703)/(25196162244158540129)*a^(13) - (22821134538708725)/(1326113802324133691)*a^(12) + (1176695634014083817)/(25196162244158540129)*a^(11) + (963124741614001111)/(25196162244158540129)*a^(10) - (326330466116974893)/(2290560204014412739)*a^(9) + (12990120953446917045)/(25196162244158540129)*a^(8) - (4272871075994449508)/(25196162244158540129)*a^(7) - (137249757820083100)/(1326113802324133691)*a^(6) + (71667557705098866481)/(50392324488317080258)*a^(5) - (20643805077452825423)/(25196162244158540129)*a^(4) + (15924773894007964549)/(25196162244158540129)*a^(3) + (70000830004142297541)/(50392324488317080258)*a^(2) + (222492108710208627)/(4581120408028825478)*a + (39551100581183099085)/(50392324488317080258) , (4196546517802450)/(25196162244158540129)*a^(15) - (26349758449001800)/(25196162244158540129)*a^(14) + (94572072018600151)/(25196162244158540129)*a^(13) - (16040440963429451)/(1326113802324133691)*a^(12) + (660959312889193834)/(25196162244158540129)*a^(11) - (1068818883439573106)/(25196162244158540129)*a^(10) - (8885576469126770)/(2290560204014412739)*a^(9) + (1918333604089849803)/(25196162244158540129)*a^(8) - (4281352789523667519)/(25196162244158540129)*a^(7) + (2235775844479591)/(1326113802324133691)*a^(6) + (3091994356137682291)/(25196162244158540129)*a^(5) - (11458108353400505118)/(25196162244158540129)*a^(4) + (959048844459908057)/(25196162244158540129)*a^(3) - (1021496112395625539)/(25196162244158540129)*a^(2) - (485463093135185201)/(2290560204014412739)*a - (12965349531366570661)/(25196162244158540129) , (6466217053336723)/(25196162244158540129)*a^(15) - (31393696368033825)/(50392324488317080258)*a^(14) + (150160544682670815)/(25196162244158540129)*a^(13) - (19541089376237777)/(1326113802324133691)*a^(12) + (1596028596668692291)/(25196162244158540129)*a^(11) - (2613632588725542640)/(25196162244158540129)*a^(10) + (661634511782035137)/(2290560204014412739)*a^(9) - (4542997834168757815)/(25196162244158540129)*a^(8) + (3895952381066624319)/(25196162244158540129)*a^(7) + (1611300894515126509)/(1326113802324133691)*a^(6) - (71909109862183801767)/(50392324488317080258)*a^(5) + (64487150454342480201)/(25196162244158540129)*a^(4) - (3475298633305909145)/(25196162244158540129)*a^(3) - (6058699689350258487)/(50392324488317080258)*a^(2) + (5945197926023431051)/(4581120408028825478)*a + (43525584100099890309)/(50392324488317080258) , (997400808742105)/(2290560204014412739)*a^(15) - (19024627983018005)/(4581120408028825478)*a^(14) + (41288706883749259)/(2290560204014412739)*a^(13) - (8100702712167323)/(120555800211284881)*a^(12) + (372779888766973632)/(2290560204014412739)*a^(11) - (793497691671332527)/(2290560204014412739)*a^(10) + (497033481144406643)/(2290560204014412739)*a^(9) + (821378418800251324)/(2290560204014412739)*a^(8) - (5618842156886642736)/(2290560204014412739)*a^(7) + (344167741501181872)/(120555800211284881)*a^(6) - (12562630996550420357)/(4581120408028825478)*a^(5) - (9690593718348054193)/(2290560204014412739)*a^(4) + (9742867263907721194)/(2290560204014412739)*a^(3) - (30079008846531550923)/(4581120408028825478)*a^(2) - (18348853448358843099)/(4581120408028825478)*a + (14577333090133434341)/(4581120408028825478) , (171541024753776354)/(25196162244158540129)*a^(15) - (3335015476017818995)/(50392324488317080258)*a^(14) + (5441474299639686196)/(25196162244158540129)*a^(13) - (990149386706329969)/(1326113802324133691)*a^(12) + (32653413990153579857)/(25196162244158540129)*a^(11) - (52178484619134879716)/(25196162244158540129)*a^(10) - (9320627583223329124)/(2290560204014412739)*a^(9) + (336032124287513759053)/(25196162244158540129)*a^(8) - (701944740933340685434)/(25196162244158540129)*a^(7) - (935925862289871639)/(1326113802324133691)*a^(6) + (1583020671286440549763)/(50392324488317080258)*a^(5) - (2031706528533119179986)/(25196162244158540129)*a^(4) + (528394887683616339623)/(25196162244158540129)*a^(3) + (1207611164783024461109)/(50392324488317080258)*a^(2) - (409693802145119524167)/(4581120408028825478)*a - (2448928847512185946719)/(50392324488317080258) ], 208333.790853, [[x^2 - x - 1, 1], [x^4 - x^3 + x^2 - x + 1, 1], [x^8 - x^7 - 7*x^6 + 10*x^5 + 21*x^4 - 30*x^3 - 28*x^2 + 48*x + 41, 1]]]