Normalized defining polynomial
\( x^{16} - 5 x^{15} + 23 x^{14} - 60 x^{13} + 148 x^{12} - 140 x^{11} - 124 x^{10} + 1260 x^{9} - 2160 x^{8} + 1975 x^{7} + 2431 x^{6} - 5905 x^{5} + 7323 x^{4} + 640 x^{3} - 4487 x^{2} + 5700 x + 4061 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(654379487370001220703125=5^{14}\cdot 101^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{61} a^{13} - \frac{1}{61} a^{12} - \frac{27}{61} a^{11} - \frac{27}{61} a^{10} + \frac{28}{61} a^{9} - \frac{9}{61} a^{8} + \frac{13}{61} a^{7} - \frac{6}{61} a^{6} + \frac{23}{61} a^{5} - \frac{21}{61} a^{4} - \frac{13}{61} a^{3} + \frac{9}{61} a - \frac{10}{61}$, $\frac{1}{7442} a^{14} + \frac{9}{3721} a^{13} - \frac{1243}{3721} a^{12} + \frac{889}{3721} a^{11} - \frac{212}{3721} a^{10} + \frac{1207}{3721} a^{9} - \frac{79}{3721} a^{8} - \frac{1740}{3721} a^{7} + \frac{46}{3721} a^{6} + \frac{2917}{7442} a^{5} + \frac{770}{3721} a^{4} + \frac{944}{3721} a^{3} - \frac{357}{7442} a^{2} + \frac{3211}{7442} a - \frac{3423}{7442}$, $\frac{1}{50392324488317080258} a^{15} - \frac{321291165700321}{25196162244158540129} a^{14} - \frac{204464160435337145}{25196162244158540129} a^{13} - \frac{367951459233663402}{1326113802324133691} a^{12} - \frac{11798113508735928228}{25196162244158540129} a^{11} - \frac{431526046476339129}{25196162244158540129} a^{10} - \frac{32529476975600235}{2290560204014412739} a^{9} + \frac{4331138135293489578}{25196162244158540129} a^{8} - \frac{8702072773718720082}{25196162244158540129} a^{7} - \frac{572395681772275491}{2652227604648267382} a^{6} - \frac{154048114184098714}{25196162244158540129} a^{5} + \frac{4233096731566042789}{25196162244158540129} a^{4} - \frac{17613737819400402899}{50392324488317080258} a^{3} - \frac{19437208704996859149}{50392324488317080258} a^{2} - \frac{1854145324492163981}{4581120408028825478} a - \frac{546574498440826690}{25196162244158540129}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{44569710751021387}{50392324488317080258} a^{15} - \frac{131656711918119643}{25196162244158540129} a^{14} + \frac{545867941976646658}{25196162244158540129} a^{13} - \frac{84013903592922540}{1326113802324133691} a^{12} + \frac{3634186056863628411}{25196162244158540129} a^{11} - \frac{4676804072823601797}{25196162244158540129} a^{10} - \frac{263090171171962626}{2290560204014412739} a^{9} + \frac{25752337185017199132}{25196162244158540129} a^{8} - \frac{52985074036064823297}{25196162244158540129} a^{7} + \frac{4243545259081657347}{2652227604648267382} a^{6} + \frac{27667551915643283129}{25196162244158540129} a^{5} - \frac{113167945587267231270}{25196162244158540129} a^{4} + \frac{242952679043774988087}{50392324488317080258} a^{3} - \frac{63688884853552565401}{50392324488317080258} a^{2} - \frac{9291403389072836475}{4581120408028825478} a + \frac{18081370936949947965}{25196162244158540129} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 208333.790853 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1281 |
| Character table for t16n1281 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.159390625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $101$ | 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 101.4.3.4 | $x^{4} + 808$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 101.4.0.1 | $x^{4} - x + 12$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |