Normalized defining polynomial
\( x^{16} - 5 x^{15} + 104 x^{14} - 90 x^{13} + 6012 x^{12} + 4535 x^{11} + 255252 x^{10} + 460820 x^{9} + 7746025 x^{8} + 22638150 x^{7} + 210234688 x^{6} + 641154675 x^{5} + 3240856012 x^{4} + 6091897560 x^{3} + 15754050266 x^{2} - 2417066385 x + 276590161 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(652404832389289089417486572265625=5^{14}\cdot 83^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $112.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{11} a^{9} - \frac{4}{11} a^{8} + \frac{5}{11} a^{7} + \frac{2}{11} a^{6} + \frac{3}{11} a^{5} - \frac{1}{11} a^{4} + \frac{4}{11} a^{3} - \frac{5}{11} a^{2} - \frac{2}{11} a - \frac{3}{11}$, $\frac{1}{11} a^{10} - \frac{1}{11}$, $\frac{1}{11} a^{11} - \frac{1}{11} a$, $\frac{1}{11} a^{12} - \frac{1}{11} a^{2}$, $\frac{1}{11} a^{13} - \frac{1}{11} a^{3}$, $\frac{1}{566401} a^{14} - \frac{16656}{566401} a^{13} - \frac{2742}{566401} a^{12} - \frac{23789}{566401} a^{11} - \frac{14166}{566401} a^{10} - \frac{10702}{566401} a^{9} - \frac{79457}{566401} a^{8} - \frac{4109}{566401} a^{7} - \frac{63369}{566401} a^{6} + \frac{4206}{18271} a^{5} - \frac{239538}{566401} a^{4} + \frac{4023}{18271} a^{3} - \frac{77057}{566401} a^{2} - \frac{240301}{566401} a - \frac{26141}{566401}$, $\frac{1}{4583034990193475404095975927511616554067495569901423812514049971} a^{15} + \frac{1138387496833303656224924561915783632066712847208246141317}{4583034990193475404095975927511616554067495569901423812514049971} a^{14} - \frac{5161514302100353240796892863700957281136504315456303004507954}{416639544563043218554179629773783323097045051809220346592186361} a^{13} - \frac{1357573851721693055003092667501471903170231077242756426260556}{147839838393337916261160513790697308195725663545207219758517741} a^{12} - \frac{140647082398574657340678577787492552006977724614927707862087284}{4583034990193475404095975927511616554067495569901423812514049971} a^{11} - \frac{80880433380561162793370125304187865679114247804608243131803786}{4583034990193475404095975927511616554067495569901423812514049971} a^{10} - \frac{3554673210017531251367833221482032316435234637922165581425659}{416639544563043218554179629773783323097045051809220346592186361} a^{9} + \frac{87636500894460786897372714687399870302689311724985412728658613}{416639544563043218554179629773783323097045051809220346592186361} a^{8} - \frac{157937541076295244380040316030654453150533244284663664045085956}{416639544563043218554179629773783323097045051809220346592186361} a^{7} + \frac{157471562127794384760792134817676105681543069641409404179213595}{416639544563043218554179629773783323097045051809220346592186361} a^{6} - \frac{385477412394946037013752576154870846597134433462184374050821107}{4583034990193475404095975927511616554067495569901423812514049971} a^{5} - \frac{490184797004918826193460479431712197696380233970289085408113989}{4583034990193475404095975927511616554067495569901423812514049971} a^{4} - \frac{33207436965807101478794515785343569204019721069568751608617234}{416639544563043218554179629773783323097045051809220346592186361} a^{3} - \frac{141461736085308743665803043633378969431830113122910883725669068}{4583034990193475404095975927511616554067495569901423812514049971} a^{2} + \frac{1612200587189555990079178354445660951256143354640543679193276811}{4583034990193475404095975927511616554067495569901423812514049971} a - \frac{76372535340618206458183802457612303125646845273796586072420}{275571823113070495105283863117769018944591159274933787055141}$
Class group and class number
$C_{15}$, which has order $15$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{523984486099651013517038609596612096131851762502645}{979071777439323948749407376097333166859110354604021322904091} a^{15} - \frac{1039212966909683875110419342014293046522930769253334}{979071777439323948749407376097333166859110354604021322904091} a^{14} + \frac{38932285208742420071658306828556415764167809910066842}{979071777439323948749407376097333166859110354604021322904091} a^{13} + \frac{167228019045304536236139142893003528304060929011894199}{979071777439323948749407376097333166859110354604021322904091} a^{12} + \frac{2223490518680505169379942860250237313341836272799897677}{979071777439323948749407376097333166859110354604021322904091} a^{11} + \frac{12857233077560231768547120612931050958732611938704061078}{979071777439323948749407376097333166859110354604021322904091} a^{10} + \frac{105898814797813932755048153843493592076771437120124240187}{979071777439323948749407376097333166859110354604021322904091} a^{9} + \frac{605541794125866312782460858813813444885142764608610261853}{979071777439323948749407376097333166859110354604021322904091} a^{8} + \frac{3513919932940063902110548975099493685931981339647382338140}{979071777439323948749407376097333166859110354604021322904091} a^{7} + \frac{20683278194243331935544221963553069761323307445038181803069}{979071777439323948749407376097333166859110354604021322904091} a^{6} + \frac{113335227689452874037833972343184995576568569522307953059883}{979071777439323948749407376097333166859110354604021322904091} a^{5} + \frac{45948176749832396863562168682150606823194000653602940895962}{89006525221756722613582488736121196987191850418547392991281} a^{4} + \frac{1867148487804552260943980912767707696189227088484456202133530}{979071777439323948749407376097333166859110354604021322904091} a^{3} + \frac{4686897303920390217706582858403374594574508885497060655651917}{979071777439323948749407376097333166859110354604021322904091} a^{2} + \frac{8221968366145718639393366728047314932224341281047537185128884}{979071777439323948749407376097333166859110354604021322904091} a - \frac{53916996156431065782366260197204105242352094367390555893}{58870289064958448003692344182390305264813321784860881661} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6305600871.78 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8: C_2$ |
| Character table for $C_8: C_2$ |
Intermediate fields
| \(\Q(\sqrt{-415}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-83}) \), \(\Q(\sqrt{5}, \sqrt{-83})\), 4.4.861125.1, \(\Q(\zeta_{5})\), 8.0.741536265625.1, 8.4.25542216669453125.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 83 | Data not computed | ||||||