Normalized defining polynomial
\( x^{16} - 4 x^{15} + 30 x^{14} - 108 x^{13} + 377 x^{12} - 1448 x^{11} + 4186 x^{10} - 15124 x^{9} + 39301 x^{8} - 102396 x^{7} + 224334 x^{6} - 383132 x^{5} + 716343 x^{4} - 709592 x^{3} + 1267074 x^{2} - 494628 x + 1187794 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6504492482542510154973184=2^{32}\cdot 17^{6}\cdot 89^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7}$, $\frac{1}{4} a^{12} - \frac{1}{2} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{13} - \frac{1}{2} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{14} + \frac{1}{16} a^{12} - \frac{1}{4} a^{10} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{16} a^{6} - \frac{1}{4} a^{5} - \frac{5}{16} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{3}{8}$, $\frac{1}{96120817696921336456638353831027437424} a^{15} - \frac{1459537218954352521761889449461598391}{48060408848460668228319176915513718712} a^{14} + \frac{3241962270580915732724676854980471169}{96120817696921336456638353831027437424} a^{13} - \frac{2223203636775710410630905925864890705}{48060408848460668228319176915513718712} a^{12} + \frac{5477400192624281432415808937130672991}{24030204424230334114159588457756859356} a^{11} + \frac{1348162344319231010635584507551072005}{12015102212115167057079794228878429678} a^{10} - \frac{10857765403457419297134056658190653525}{48060408848460668228319176915513718712} a^{9} - \frac{335571896288109664989226614342233471}{12015102212115167057079794228878429678} a^{8} - \frac{44386442534349188692113088661319438665}{96120817696921336456638353831027437424} a^{7} + \frac{17816715726813868995310065689474283809}{48060408848460668228319176915513718712} a^{6} + \frac{18140450674295597610352463091070510635}{96120817696921336456638353831027437424} a^{5} - \frac{1359258251950327991901909076952690253}{48060408848460668228319176915513718712} a^{4} - \frac{2335477345964464096959412463321022994}{6007551106057583528539897114439214839} a^{3} + \frac{9799290716859769651288826136694212183}{24030204424230334114159588457756859356} a^{2} - \frac{8322646702980342808747948870342984295}{48060408848460668228319176915513718712} a + \frac{3196623362190269074764598166541637223}{24030204424230334114159588457756859356}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{30968005237190175991392570913}{7334107866391067942670406976272504} a^{15} + \frac{395237163614447670164987700581}{14668215732782135885340813952545008} a^{14} - \frac{1094909129584366176186091917249}{7334107866391067942670406976272504} a^{13} + \frac{10270672993983243252495822480669}{14668215732782135885340813952545008} a^{12} - \frac{2004201624610258734176279757014}{916763483298883492833800872034063} a^{11} + \frac{30187678734831336309178892388853}{3667053933195533971335203488136252} a^{10} - \frac{97404113014398117481323029414265}{3667053933195533971335203488136252} a^{9} + \frac{605839803314331414782319474113983}{7334107866391067942670406976272504} a^{8} - \frac{1879138703164575184679759889636309}{7334107866391067942670406976272504} a^{7} + \frac{8776995300882305610446574740570859}{14668215732782135885340813952545008} a^{6} - \frac{10067166299846804537848241215012561}{7334107866391067942670406976272504} a^{5} + \frac{35198921054656811085561773009759863}{14668215732782135885340813952545008} a^{4} - \frac{12915431958618117274175059945726795}{3667053933195533971335203488136252} a^{3} + \frac{4611789019255211503754475462356788}{916763483298883492833800872034063} a^{2} - \frac{2973070873639051884163163075534827}{916763483298883492833800872034063} a + \frac{41461469303993354008905227103860865}{7334107866391067942670406976272504} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4458007.68326 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_2^4.C_2$ (as 16T657):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^3.C_2^4.C_2$ |
| Character table for $C_2^3.C_2^4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-2}) \), 4.0.1088.2, 4.4.4352.1, \(\Q(\zeta_{8})\), 8.0.18939904.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ |
| 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
| $17$ | 17.4.3.3 | $x^{4} + 51$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.3.3 | $x^{4} + 51$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $89$ | $\Q_{89}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{89}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{89}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{89}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{89}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{89}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{89}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{89}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 89.2.1.1 | $x^{2} - 89$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.1.1 | $x^{2} - 89$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.1.1 | $x^{2} - 89$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.1.1 | $x^{2} - 89$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |