Normalized defining polynomial
\( x^{16} - 4 x^{15} + 2 x^{14} + 4 x^{13} + 296 x^{12} - 1864 x^{11} + 5248 x^{10} - 8112 x^{9} + 12608 x^{8} - 31988 x^{7} + 70802 x^{6} - 81008 x^{5} + 118945 x^{4} - 211004 x^{3} + 272884 x^{2} + 158848 x + 31688 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6504492482542510154973184=2^{32}\cdot 17^{6}\cdot 89^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} + \frac{1}{4} a^{9} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{24} a^{14} - \frac{1}{8} a^{13} + \frac{1}{24} a^{11} + \frac{1}{8} a^{10} + \frac{1}{4} a^{9} + \frac{7}{24} a^{8} + \frac{7}{24} a^{7} + \frac{5}{12} a^{6} + \frac{3}{8} a^{5} + \frac{1}{8} a^{4} - \frac{1}{12} a^{3} - \frac{1}{6} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{8713380706801529387921786774811463327992} a^{15} + \frac{51991227350363697428946034101507995353}{2904460235600509795973928924937154442664} a^{14} + \frac{21510391809149013960230826147208715993}{363057529450063724496741115617144305333} a^{13} - \frac{424953908576497195484135912292588375389}{8713380706801529387921786774811463327992} a^{12} + \frac{123157838153958973535849115604294226907}{2904460235600509795973928924937154442664} a^{11} + \frac{130614147172488747863806848245078914177}{1452230117800254897986964462468577221332} a^{10} + \frac{3400448757252898582240772970605632496665}{8713380706801529387921786774811463327992} a^{9} + \frac{3224487482233343273622370108639935440833}{8713380706801529387921786774811463327992} a^{8} - \frac{1268772433874275874389083091179978559207}{4356690353400764693960893387405731663996} a^{7} - \frac{520159846836833213789574720765570417727}{2904460235600509795973928924937154442664} a^{6} - \frac{930587739136391388544277870585009785953}{2904460235600509795973928924937154442664} a^{5} - \frac{817109930573780335868221698799318406701}{4356690353400764693960893387405731663996} a^{4} - \frac{801578874503193970748832148628756619377}{4356690353400764693960893387405731663996} a^{3} - \frac{202221689070583960166788689019520728066}{1089172588350191173490223346851432915999} a^{2} - \frac{493781357387450089772955001059801297985}{1089172588350191173490223346851432915999} a + \frac{5890250397466289909943919392896071167}{363057529450063724496741115617144305333}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{44250165121311042654210995770}{5300961168217724371749348298517197} a^{15} + \frac{1500109596565883227268588752121}{42407689345741794973994786388137576} a^{14} - \frac{1506355984694204418359797537541}{42407689345741794973994786388137576} a^{13} - \frac{592918956813176638438513444155}{21203844672870897486997393194068788} a^{12} - \frac{101512456778332791937867009397841}{42407689345741794973994786388137576} a^{11} + \frac{690552447818196378215222700615089}{42407689345741794973994786388137576} a^{10} - \frac{1075537189181812195896658283179437}{21203844672870897486997393194068788} a^{9} + \frac{3627724168958449196050907064289295}{42407689345741794973994786388137576} a^{8} - \frac{5251148284788877125721072249489703}{42407689345741794973994786388137576} a^{7} + \frac{3067331690432805018711758478978263}{10601922336435448743498696597034394} a^{6} - \frac{30778553947940628409904399698018677}{42407689345741794973994786388137576} a^{5} + \frac{39227199661091396691243853155353569}{42407689345741794973994786388137576} a^{4} - \frac{23876760831599099100725073394927547}{21203844672870897486997393194068788} a^{3} + \frac{9547885549388264792323342070584572}{5300961168217724371749348298517197} a^{2} - \frac{17412656744100105393119740702518116}{5300961168217724371749348298517197} a - \frac{7997486894026496719404740367805436}{5300961168217724371749348298517197} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3903757.22482 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_2^4.C_2$ (as 16T657):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^3.C_2^4.C_2$ |
| Character table for $C_2^3.C_2^4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-2}) \), 4.4.4352.1, 4.0.1088.2, \(\Q(\zeta_{8})\), 8.0.18939904.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ |
| 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
| $17$ | 17.4.3.4 | $x^{4} + 459$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.3.4 | $x^{4} + 459$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 89 | Data not computed | ||||||