Normalized defining polynomial
\( x^{16} + 1501 x^{14} + 911285 x^{12} + 286021943 x^{10} + 49105808800 x^{8} + 4480851471638 x^{6} + 197363433219140 x^{4} + 3937312460664784 x^{2} + 28613530403758336 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(649575421749918056203935283031437604425079449452544=2^{28}\cdot 193^{8}\cdot 257^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1498.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 193, 257$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7}$, $\frac{1}{1028} a^{12} - \frac{41}{1028} a^{10} - \frac{37}{1028} a^{8} - \frac{39}{1028} a^{6} - \frac{1}{514} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2056} a^{13} + \frac{473}{2056} a^{11} + \frac{477}{2056} a^{9} + \frac{475}{2056} a^{7} + \frac{64}{257} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{292753232007175906690571516604462484715732128} a^{14} - \frac{1}{4112} a^{13} - \frac{10429841018940119662548772190341256830269}{26613930182470536971870137873132953155975648} a^{12} - \frac{473}{4112} a^{11} + \frac{62472975270299822363766642134671445550321593}{292753232007175906690571516604462484715732128} a^{10} + \frac{551}{4112} a^{9} + \frac{9665291985645530792445841968450005753234413}{41821890286739415241510216657780354959390304} a^{8} + \frac{1581}{4112} a^{7} + \frac{23834107594193514016224492195788694735157051}{73188308001793976672642879151115621178933032} a^{6} + \frac{129}{1028} a^{5} - \frac{1295667100748240705748442535745257888573915}{20910945143369707620755108328890177479695152} a^{4} - \frac{3}{8} a^{3} - \frac{67222192999413312923795692480237761688377}{284779408567291738025847778798115257505576} a^{2} + \frac{1}{4} a - \frac{16989556716741482323471277357874881722420}{35597426070911467253230972349764407188197}$, $\frac{1}{24085979410158390547060080957115546467502145099072} a^{15} - \frac{378003316639813760214788957348725051912299577}{2189634491832580958823643723374140587954740463552} a^{13} + \frac{594370756559915682596540690074262388198368167813}{24085979410158390547060080957115546467502145099072} a^{11} - \frac{231568413625785245399142699015610878847608044255}{3440854201451198649580011565302220923928877871296} a^{9} + \frac{618111593105843686588406989881377804510206573593}{1505373713134899409191255059819721654218884068692} a^{7} + \frac{577698184958014676963948404351592149916423892253}{1720427100725599324790005782651110461964438935648} a^{5} + \frac{10753559219568645729215620641447849529720743353}{23429941060465360454338600152836134696013759824} a^{3} - \frac{2256020856357447720138159815221035055315429715}{5857485265116340113584650038209033674003439956} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{24}\times C_{8126040}$, which has order $24963194880$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22245061053.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 38 conjugacy class representatives for t16n813 |
| Character table for t16n813 is not computed |
Intermediate fields
| \(\Q(\sqrt{257}) \), \(\Q(\sqrt{49601}) \), \(\Q(\sqrt{193}) \), \(\Q(\sqrt{193}, \sqrt{257})\), 4.4.528392.1, 4.4.19682073608.1, 8.8.387384021510730137664.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.4.11.15 | $x^{4} + 30$ | $4$ | $1$ | $11$ | $D_{4}$ | $[2, 3, 4]$ | |
| 2.4.10.2 | $x^{4} + 2 x^{2} - 1$ | $4$ | $1$ | $10$ | $D_{4}$ | $[2, 3, 7/2]$ | |
| 193 | Data not computed | ||||||
| 257 | Data not computed | ||||||