Normalized defining polynomial
\( x^{16} + 280 x^{14} + 30380 x^{12} + 1646400 x^{10} + 47899950 x^{8} + 739508000 x^{6} + 5529503000 x^{4} + 16470860000 x^{2} + 14412002500 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6490588908866265677824000000000000=2^{62}\cdot 5^{12}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $129.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1120=2^{5}\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1120}(1,·)$, $\chi_{1120}(643,·)$, $\chi_{1120}(449,·)$, $\chi_{1120}(841,·)$, $\chi_{1120}(587,·)$, $\chi_{1120}(83,·)$, $\chi_{1120}(281,·)$, $\chi_{1120}(729,·)$, $\chi_{1120}(923,·)$, $\chi_{1120}(867,·)$, $\chi_{1120}(561,·)$, $\chi_{1120}(169,·)$, $\chi_{1120}(363,·)$, $\chi_{1120}(27,·)$, $\chi_{1120}(1009,·)$, $\chi_{1120}(307,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{7} a^{2}$, $\frac{1}{7} a^{3}$, $\frac{1}{245} a^{4}$, $\frac{1}{245} a^{5}$, $\frac{1}{1715} a^{6}$, $\frac{1}{1715} a^{7}$, $\frac{1}{120050} a^{8}$, $\frac{1}{120050} a^{9}$, $\frac{1}{840350} a^{10}$, $\frac{1}{840350} a^{11}$, $\frac{1}{29412250} a^{12}$, $\frac{1}{29412250} a^{13}$, $\frac{1}{44677207750} a^{14} - \frac{38}{3191229125} a^{12} + \frac{3}{26050850} a^{10} + \frac{43}{26050850} a^{8} - \frac{13}{372155} a^{6} + \frac{1}{53165} a^{4} + \frac{78}{1519} a^{2} - \frac{71}{217}$, $\frac{1}{44677207750} a^{15} - \frac{38}{3191229125} a^{13} + \frac{3}{26050850} a^{11} + \frac{43}{26050850} a^{9} - \frac{13}{372155} a^{7} + \frac{1}{53165} a^{5} + \frac{78}{1519} a^{3} - \frac{71}{217} a$
Class group and class number
$C_{2}\times C_{4}\times C_{4}\times C_{8}\times C_{5576}$, which has order $1427456$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12198.951274811623 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}, \sqrt{5})\), 4.4.51200.1, \(\Q(\zeta_{16})^+\), 8.8.2621440000.1, 8.0.80564191232000000.78, 8.0.80564191232000000.92 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |