Normalized defining polynomial
\( x^{16} + 52 x^{14} + 1558 x^{12} - 24 x^{11} + 32324 x^{10} + 1848 x^{9} + 483207 x^{8} + 38592 x^{7} + 5163148 x^{6} + 175584 x^{5} + 37553914 x^{4} - 1933320 x^{3} + 168754196 x^{2} - 17519784 x + 350398078 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6486697150600796010022736756736=2^{48}\cdot 3^{8}\cdot 37^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $84.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1776=2^{4}\cdot 3\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1776}(1,·)$, $\chi_{1776}(1703,·)$, $\chi_{1776}(1553,·)$, $\chi_{1776}(1109,·)$, $\chi_{1776}(665,·)$, $\chi_{1776}(1627,·)$, $\chi_{1776}(221,·)$, $\chi_{1776}(1183,·)$, $\chi_{1776}(739,·)$, $\chi_{1776}(295,·)$, $\chi_{1776}(1259,·)$, $\chi_{1776}(815,·)$, $\chi_{1776}(371,·)$, $\chi_{1776}(1333,·)$, $\chi_{1776}(889,·)$, $\chi_{1776}(445,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{131547407} a^{14} + \frac{11894826}{131547407} a^{13} - \frac{43382590}{131547407} a^{12} - \frac{64406050}{131547407} a^{11} + \frac{20294361}{131547407} a^{10} + \frac{30643768}{131547407} a^{9} - \frac{49252126}{131547407} a^{8} + \frac{54405816}{131547407} a^{7} + \frac{48379834}{131547407} a^{6} + \frac{39156889}{131547407} a^{5} + \frac{11735333}{131547407} a^{4} + \frac{44904034}{131547407} a^{3} + \frac{6215745}{131547407} a^{2} - \frac{21919196}{131547407} a - \frac{12312998}{131547407}$, $\frac{1}{315210357105884732516865942349726793903} a^{15} - \frac{267286306559537504299819477233}{315210357105884732516865942349726793903} a^{14} + \frac{4785021134891026754547370153553877570}{18541785712110866618639173079395693759} a^{13} + \frac{278341852698575843008980209700588059}{18541785712110866618639173079395693759} a^{12} + \frac{13558414040094980777548057609948550138}{45030051015126390359552277478532399129} a^{11} + \frac{1028370614397804838840378121776048653}{18541785712110866618639173079395693759} a^{10} - \frac{85310041041341626956938042482449264331}{315210357105884732516865942349726793903} a^{9} - \frac{101605814603122108855624770883486116727}{315210357105884732516865942349726793903} a^{8} - \frac{83131442427603773774209992809110922005}{315210357105884732516865942349726793903} a^{7} + \frac{133282575596779884312912803091112570372}{315210357105884732516865942349726793903} a^{6} + \frac{131398478552386365086145260890315946589}{315210357105884732516865942349726793903} a^{5} + \frac{7030434032581049252092153180046662695}{45030051015126390359552277478532399129} a^{4} - \frac{105762580362026568651884053442723173249}{315210357105884732516865942349726793903} a^{3} + \frac{21304172755150310142513374227191384889}{45030051015126390359552277478532399129} a^{2} - \frac{131511173620329203113689138454826961382}{315210357105884732516865942349726793903} a + \frac{56935299604779599193849299376934263888}{315210357105884732516865942349726793903}$
Class group and class number
$C_{106080}$, which has order $106080$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11964.310642723332 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.9 | $x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ |
| 2.8.24.9 | $x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $37$ | 37.8.4.1 | $x^{8} + 5476 x^{4} - 50653 x^{2} + 7496644$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 37.8.4.1 | $x^{8} + 5476 x^{4} - 50653 x^{2} + 7496644$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |