Normalized defining polynomial
\( x^{16} - 2 x^{15} + 10 x^{14} + 135 x^{13} + 2136 x^{12} - 4780 x^{11} + 46571 x^{10} + 216170 x^{9} + 341046 x^{8} + 2060735 x^{7} + 17453050 x^{6} + 35047982 x^{5} + 39593521 x^{4} + 107817400 x^{3} + 365353240 x^{2} + 691165560 x + 791267920 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(648034417553121620683837890625=5^{12}\cdot 61^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{19} a^{12} - \frac{9}{19} a^{11} + \frac{5}{19} a^{10} - \frac{1}{19} a^{9} + \frac{8}{19} a^{8} + \frac{6}{19} a^{7} - \frac{5}{19} a^{6} - \frac{5}{19} a^{5} - \frac{6}{19} a^{4} + \frac{4}{19} a^{3} + \frac{5}{19} a^{2} - \frac{6}{19} a$, $\frac{1}{114} a^{13} - \frac{1}{57} a^{12} - \frac{10}{57} a^{11} - \frac{23}{114} a^{10} - \frac{28}{57} a^{9} + \frac{4}{19} a^{8} - \frac{13}{38} a^{7} + \frac{6}{19} a^{6} + \frac{9}{19} a^{5} - \frac{1}{6} a^{4} + \frac{26}{57} a^{3} - \frac{14}{57} a^{2} + \frac{5}{38} a + \frac{1}{3}$, $\frac{1}{12722480028} a^{14} + \frac{3845867}{1060206669} a^{13} - \frac{24056135}{2120413338} a^{12} + \frac{454579517}{4240826676} a^{11} - \frac{154379497}{706804446} a^{10} + \frac{43966787}{3180620007} a^{9} + \frac{1583246593}{4240826676} a^{8} + \frac{158303791}{353402223} a^{7} - \frac{419237135}{2120413338} a^{6} - \frac{1417478941}{12722480028} a^{5} - \frac{410933497}{3180620007} a^{4} + \frac{3030269759}{6361240014} a^{3} - \frac{4549159631}{12722480028} a^{2} - \frac{2341979699}{6361240014} a - \frac{74562500}{167401053}$, $\frac{1}{4302505944404911086567481713417201530683077531925024780392} a^{15} - \frac{39323322453319275259822195913753128211471358935}{2151252972202455543283740856708600765341538765962512390196} a^{14} - \frac{813155912559336654010259454884943760245087183114479275}{239028108022495060364860095189844529482393196218056932244} a^{13} - \frac{11888081657147875810516401984913303925389068820873400393}{478056216044990120729720190379689058964786392436113864488} a^{12} + \frac{17107265760745140094881136207429723387350220613447014819}{358542162033742590547290142784766794223589794327085398366} a^{11} + \frac{483829367553677715035738861517532033105943046166057982303}{1075626486101227771641870428354300382670769382981256195098} a^{10} + \frac{143314663090871225079142410151764054948635534027735046211}{4302505944404911086567481713417201530683077531925024780392} a^{9} + \frac{273093661834822544980614821252094426631543893795861115525}{717084324067485181094580285569533588447179588654170796732} a^{8} + \frac{292138699474735879117279478575304810640360560974289448349}{717084324067485181094580285569533588447179588654170796732} a^{7} + \frac{1584523189766961051040979803976143926184080878123188719959}{4302505944404911086567481713417201530683077531925024780392} a^{6} + \frac{27400265686936908473369053222515098690139380697469837393}{717084324067485181094580285569533588447179588654170796732} a^{5} + \frac{500803894627110799782824923113551762979759443594823464683}{2151252972202455543283740856708600765341538765962512390196} a^{4} + \frac{99000381859713365399874504048697415566468650903699637}{506594365289639831221886461016978868560352941472391944} a^{3} + \frac{16690901406107133709212569119688329832086277600132107327}{56611920321117251139045812018647388561619441209539799742} a^{2} - \frac{78063162936907078503358923079727573246364115516662347}{537813243050613885820935214177150191335384691490628097549} a - \frac{6385496605025256374151678695791215042010240183614685268}{28305960160558625569522906009323694280809720604769899871}$
Class group and class number
$C_{2}\times C_{6}\times C_{6}$, which has order $72$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7602239.42975 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $61$ | 61.8.6.1 | $x^{8} - 61 x^{4} + 59536$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 61.8.6.1 | $x^{8} - 61 x^{4} + 59536$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |