Normalized defining polynomial
\( x^{16} - 4 x^{15} + 41 x^{14} - 126 x^{13} + 978 x^{12} - 1964 x^{11} + 12609 x^{10} - 20673 x^{9} + 112208 x^{8} - 207249 x^{7} + 983391 x^{6} - 1876433 x^{5} + 8645703 x^{4} - 17027763 x^{3} + 37293974 x^{2} - 33563693 x + 63101531 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(648034417553121620683837890625=5^{12}\cdot 61^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{30} a^{8} - \frac{1}{15} a^{7} - \frac{7}{15} a^{6} - \frac{1}{5} a^{5} - \frac{1}{30} a^{4} + \frac{1}{15} a^{3} + \frac{3}{10} a^{2} + \frac{11}{30} a + \frac{11}{30}$, $\frac{1}{30} a^{9} + \frac{2}{5} a^{7} - \frac{2}{15} a^{6} - \frac{13}{30} a^{5} + \frac{13}{30} a^{3} - \frac{1}{30} a^{2} + \frac{1}{10} a - \frac{4}{15}$, $\frac{1}{30} a^{10} - \frac{1}{3} a^{7} + \frac{1}{6} a^{6} + \frac{2}{5} a^{5} - \frac{1}{6} a^{4} + \frac{1}{6} a^{3} - \frac{1}{2} a^{2} + \frac{1}{3} a - \frac{2}{5}$, $\frac{1}{30} a^{11} - \frac{1}{2} a^{7} - \frac{4}{15} a^{6} - \frac{1}{6} a^{5} - \frac{1}{6} a^{4} + \frac{1}{6} a^{3} + \frac{1}{3} a^{2} + \frac{4}{15} a - \frac{1}{3}$, $\frac{1}{290520} a^{12} - \frac{1}{96840} a^{11} - \frac{3491}{290520} a^{10} + \frac{2117}{290520} a^{9} - \frac{2}{4035} a^{8} - \frac{19957}{96840} a^{7} + \frac{29803}{72630} a^{6} + \frac{56261}{290520} a^{5} + \frac{11297}{24210} a^{4} + \frac{144113}{290520} a^{3} - \frac{799}{2152} a^{2} + \frac{2519}{24210} a - \frac{140053}{290520}$, $\frac{1}{290520} a^{13} - \frac{175}{14526} a^{11} + \frac{166}{36315} a^{10} - \frac{1159}{96840} a^{9} - \frac{733}{96840} a^{8} - \frac{99137}{290520} a^{7} - \frac{21883}{290520} a^{6} - \frac{30899}{96840} a^{5} - \frac{136759}{290520} a^{4} + \frac{2423}{9684} a^{3} + \frac{31331}{96840} a^{2} + \frac{76523}{290520} a - \frac{36757}{96840}$, $\frac{1}{1452600} a^{14} - \frac{1}{1452600} a^{13} + \frac{1003}{363150} a^{11} - \frac{1309}{161400} a^{10} + \frac{6101}{726300} a^{9} + \frac{9419}{726300} a^{8} - \frac{50021}{145260} a^{7} - \frac{2477}{80700} a^{6} - \frac{29939}{80700} a^{5} + \frac{128713}{1452600} a^{4} - \frac{642533}{1452600} a^{3} - \frac{59527}{145260} a^{2} - \frac{262717}{726300} a - \frac{457}{5400}$, $\frac{1}{28302823790626939035027454182600} a^{15} + \frac{326146177997678055321419}{2358568649218911586252287848550} a^{14} - \frac{39843116860108461706254739}{28302823790626939035027454182600} a^{13} + \frac{25384060960651270183491947}{28302823790626939035027454182600} a^{12} + \frac{53844221268252889587351746921}{14151411895313469517513727091300} a^{11} - \frac{9416550106576214924329576663}{7075705947656734758756863545650} a^{10} + \frac{181503268480063516621242012241}{28302823790626939035027454182600} a^{9} - \frac{112812665726769965843441414099}{14151411895313469517513727091300} a^{8} + \frac{9271719922291218793623245089849}{28302823790626939035027454182600} a^{7} + \frac{6841506978206559976736291367527}{14151411895313469517513727091300} a^{6} - \frac{13890918755530907427915108277}{471713729843782317250457569710} a^{5} - \frac{6644769897917824730479686292043}{14151411895313469517513727091300} a^{4} + \frac{1051748380618786587415541781947}{7075705947656734758756863545650} a^{3} + \frac{2220103757401965387381378307397}{9434274596875646345009151394200} a^{2} + \frac{1352457994609136379468203554871}{28302823790626939035027454182600} a - \frac{1012239656701527821143570536917}{4717137298437823172504575697100}$
Class group and class number
$C_{2}\times C_{6}\times C_{30}$, which has order $360$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 320579.979552 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $61$ | 61.8.6.1 | $x^{8} - 61 x^{4} + 59536$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 61.8.6.1 | $x^{8} - 61 x^{4} + 59536$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |